Chiral self-sorting has great potential for constructing new complex structures and determining chirality-dependent properties in multicomponent mixtures. However, it is still of great challenge to achieve high fidelity chiral self-discrimination. Besides, the researches on the coordination polymers or metal-organic frameworks for micro/nanooptoelectronics are still rare due to their low conductivity and difficulty in developing a rapid and simple scale-up synthetic method. Here, heterochiral supramolecular coordination networks (SCNs) were synthesized by the solvothermal reaction of naphthalene diimide enantiomers and cadmium iodide, using the chirality as a synthetic tuning parameter to control the morphologies. Intriguingly, heterochiral micro/nanocrystals exhibited photochromic and photodetecting properties. Furthermore, we also developed a simple and efficient doping method to enhance the conductivity and photoresponsivity of micro/nanocrystals using hydrazine. From experimental and theoretical studies, the mechanism was suggested as follows: the radicals in the singly occupied molecular orbital level of the ligands provide charge carriers that can undergo "through-space" transport between π-π stacked ligands and the electron transfer from adsorbed hydrazine to the SCNs results in reduction of energy gap, leading to increased conductivity. Our findings demonstrate a simple and powerful strategy for implementing coordination networks with redox ligands for micro/nanooptoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b04653 | DOI Listing |
Int J Biol Macromol
December 2024
Cooperative Innovation Center of Industrial Fermentation, Ministry of education & Hubei province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China. Electronic address:
Tannic acid (TA) has attracted the attention of researchers as a promising organic ligand capable of forming metal-organic coordination networks with various metal ions at interfaces to impact surface properties. In this study, we innovatively reported a self-assembly method for surface decoration by depositing TA/Fe coatings on the surface of desalted duck egg white nanoparticles (DEWN), further studying the oil/water interfacial properties of the modified particles. The results showed that the ratio and concentration of TA to Fe could modulate interfacial properties.
View Article and Find Full Text PDFJ Food Sci
December 2024
Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Microstructural properties of wheat-based food materials change during baking. These alterations affect the final product's mechanical properties, physical attributes, and consumer satisfaction. Image processing and pore network modeling were used to analyze the variations in a cookie's microstructural properties during baking.
View Article and Find Full Text PDFBMC Neurosci
December 2024
Department of Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.
Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!