Naturally occurring RNAs are known to exhibit a high degree of modularity, whereby specific structural modules (or motifs) can be mixed and matched to create new molecular architectures. The modular nature of RNA also affords researchers the ability to characterize individual structural elements in controlled synthetic contexts in order to gain new and critical insights into their particular structural features and overall performance. Here, we characterized the binding affinity of a unique loop-receptor interaction found in the tetrahydrofolate (THF) riboswitch using rationally designed self-assembling tectoRNAs. Our work suggests that the THF loop-receptor interaction has been fine-tuned for its particular role as a riboswitch component. We also demonstrate that the thermodynamic stability of this interaction can be modulated by the presence of folinic acid, which induces a local structural change at the level of the loop-receptor. This corroborates the existence of a THF binding site within this tertiary module and paves the way for its potential use as a THF responsive module for RNA nanotechnology and synthetic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614920PMC
http://dx.doi.org/10.1093/nar/gkz304DOI Listing

Publication Analysis

Top Keywords

tetrahydrofolate thf
8
thf riboswitch
8
loop-receptor interaction
8
thf
5
responsive self-assembly
4
self-assembly tectornas
4
loop-receptor
4
tectornas loop-receptor
4
loop-receptor interactions
4
interactions tetrahydrofolate
4

Similar Publications

Tetrahydrofolic acid accelerates amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity.

Int J Biol Macromol

December 2024

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Soluble cytotoxic oligomers produced during the fibrillation of both α-synuclein (αS) and amyloid-β protein (Aβ) are key pathogenic factors in Parkinson's disease (PD) and Alzheimer's disease (AD). Reducing toxic oligomers by regulating the aggregation process of αS and Aβ is an important strategy for the treatment of PD and AD. Herein, tetrahydrofolic acid (THF) is found to accelerate amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity.

View Article and Find Full Text PDF

Biological systems can directly upgrade carbon dioxide (CO) into chemicals. The CO fixation rate of autotrophic organisms, however, is too slow for industrial utility, and the breadth of engineered metabolic pathways for the synthesis of value-added chemicals is too limited. Biotechnology workhorse organisms with extensively engineered metabolic pathways have recently been engineered for CO fixation.

View Article and Find Full Text PDF

Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell-cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in which Vibrio cells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS.

View Article and Find Full Text PDF

Microbially-produced folate forms support the growth of Roseburia intestinalis but not its competitive fitness in fecal batch fermentations.

BMC Microbiol

September 2024

Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.

Background: Folate (vitamin B9) occurs naturally mainly as tetrahydrofolate (THF), methyl-tetrahydrofolate (M-THF), and formyl-tetrahydrofolate (F-THF), and as dietary synthetic form (folic acid). While folate auxotrophy and prototrophy are known for several gut microbes, the specific folate forms produced by gut prototrophs and their impact on gut auxotrophs and microbiota remain unexplored.

Methods: Here, we quantified by UHPLC-FL/UV folate produced by six predicted gut prototrophs (Marvinbryantia formatexigens DSM 14469, Blautia hydrogenotrophica 10507 , Blautia producta DSM 14466, Bacteroides caccae DSM 19024, Bacteroides ovatus DSM 1896, and Bacteroides thetaiotaomicron DSM 2079 ) and investigated the impact of different folate forms and doses (50 and 200 µg/l) on the growth and metabolism of the gut auxotroph Roseburia intestinalis in pure cultures and during fecal anaerobic batch fermentations (48 h, 37 °C) of five healthy adults.

View Article and Find Full Text PDF
Article Synopsis
  • * A new certified reference material (CRM) for low levels of folic acid and 5-methyltetrahydrofolate was created using human plasma from the Korean Red Cross, assessed through advanced liquid chromatography techniques.
  • * The CRM showed stable certified values and was deemed stable for 58 months at -70 °C for folic acid, indicating its usefulness for research and analytical methods involving lower folate levels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!