We demonstrated an ultrabroadband supercontinuum (SC) generation with high coherence property in all-normal-dispersion (ANDi) Te-based chalcogenide tapered fiber. The fibers made of GeAsSeTe core and GeAsSeTe cladding glasses were fabricated via isolated stacked extrusion. The waist diameter and length can be accurately controlled by a homemade tapering platform. When the core diameter of the waist was ≤14 μm, the fiber showed an ANDi characteristic in the wavelength range of 1.7-14 μm. A coherent SC generation covered 1.7-12.7 μm was generated in a 7-cm-long tapered fiber, pumped at 5.5 μm. To the best of our knowledge, this is the first SC experimental demonstration in Te-based step-index tapered fiber and the broadest SC generation in chalcogenide tapered fiber when pumped in the normal dispersion regime so far.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.010311DOI Listing

Publication Analysis

Top Keywords

tapered fiber
20
chalcogenide tapered
12
supercontinuum generation
8
te-based chalcogenide
8
fiber pumped
8
fiber
6
tapered
5
ultrabroadband coherent
4
coherent mid-infrared
4
mid-infrared supercontinuum
4

Similar Publications

Study of Thermal Effects in Fused-Tapered Pure Passive Fibers and Signal Combiners.

Nanomaterials (Basel)

January 2025

School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.

This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.

View Article and Find Full Text PDF

Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

An in situ monitoring reaction can better obtain the variations during the progression of the photocatalytic reaction. However, the complexity of the apparatus and the limited applicability of substances are the common challenges faced by most in situ monitoring methods. Here, we invented an in situ infrared optical fiber sensor to monitor the reactants and products during photocatalytic reaction.

View Article and Find Full Text PDF

Genetic information sensors play a pivotal role in the biomedical field. The detection of deoxyribonucleic acid (DNA) is achieved experimentally using an optical microfiber interferometric sensor, which operates based on an ion-regulation sensitivity enhancement mechanism. The optical microfiber is fabricated by drawing optical fiber into a diameter of less than 10 μm via the melting and tapering technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!