In this paper, we propose a design utilizing two identically parallel-aligned nematic liquid crystal (LC) plates for fast-response and polarization-independent phase modulator. Driven by synchronized voltage signals, such a polarizer-free variable phase modulator shows a wide tunable range from zero to more than 3π, back and forth at 532nm. Due to the optical compensation of the two plates, the rise and fall time of the phase retardation corresponds to the switching-on time of the two plates. Several advantages are illustrated based on the optical compensation of two identical parallel-aligned plates. First, zero phase retardation is obtained, which overcomes the residual phase due to surfaced anchored liquid crystal molecules. The second advantage is sub-millisecond response of rise and fall of retardation since simultaneous relaxation of the two plates remains optically hidden during the synchronized voltages fall. This fast-response and polarization-independent phase modulator has great potential for practical use, including optical communications and light field imaging systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.009925DOI Listing

Publication Analysis

Top Keywords

phase modulator
16
liquid crystal
12
optical compensation
12
nematic liquid
8
based optical
8
sub-millisecond response
8
fast-response polarization-independent
8
polarization-independent phase
8
rise fall
8
phase retardation
8

Similar Publications

Metastability of multi-population Kuramoto-Sakaguchi oscillators.

Chaos

January 2025

Department of Physics, Tohoku University, Sendai 980-8578, Japan.

An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Radiology, miami, FL, USA.

Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.

View Article and Find Full Text PDF

Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.

View Article and Find Full Text PDF

Probing Berry Phase Effect in Topological Surface States.

Phys Rev Lett

December 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.

View Article and Find Full Text PDF

Mapping the Topological Proximity-Induced Gap in Multiterminal Josephson Junctions.

Phys Rev Lett

December 2024

Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals. The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements. We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences {ϕ_{i}}.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!