We investigate the dependence of photonic waveguide propagation loss on the thickness of the buried oxide layer in Y-cut lithium niobate on insulator substrate to identify trade-offs between optical losses and electromechanical coupling of surface acoustic wave (SAW) devices for acousto-optic applications. Simulations show that a thicker oxide layer reduces the waveguide loss but lowers the electromechanical coupling coefficient of the SAW device. Optical racetrack resonators with different lengths were fabricated by argon plasma etching to experimentally extract waveguide losses. By increasing the oxide layer thickness from 1 µm to 2 µm, we were able to reduce propagation loss of 2 µm (1 µm) wide waveguide from 1.85 dB/cm (3 dB/cm) to as low as 0.37 dB/cm (0.77 dB/cm). Resonators with a quality factor greater than 1 million were demonstrated as well. An oxide thickness of approximately 1.5 µm is sufficient to significantly reduce propagation loss, due to leakage into the substrate and simultaneously attain good electromechanical coupling in acoustic devices. This work not only provides insights on the design and realization of low-loss photonic waveguides in lithium niobate, but also, most importantly, offers experimental evidence of how the oxide thickness directly impacts losses and guides its selection for the synthesis of high-performance acousto-optic devices in Y-cut lithium niobate on insulator.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.009794DOI Listing

Publication Analysis

Top Keywords

lithium niobate
16
propagation loss
12
oxide layer
12
electromechanical coupling
12
acousto-optic applications
8
y-cut lithium
8
niobate insulator
8
thickness µm
8
µm µm
8
reduce propagation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!