Accurate modeling of the operation of diode-pumped alkali lasers is a critical step toward the design of high-powered devices. We present precision measurements for the Cs-CH 6P → 6P mixing cross section and the 6P → 6S quenching cross section, which are important parameters in understanding the operation and, in particular, the heat generated in a cesium vapor laser. Measurements are carried out using ultrafast laser pulse excitation and observation of fluorescence due to collisional excitation transfer in time is done using the technique of time-correlated single-photon counting. Mixing rate measurements are acquired over methane pressures of 10 - 40 Torr, resulting in a Cs-CH 6P → 6P mixing cross section of (1.40 ± 0.08) × 10 cm, while quenching rate measurements are carried out over methane pressures of 500 - 4000 Torr, resulting in a 6P → 6S quenching cross section of (1.57 ± 0.03) × 10 cm. These results suggest only a slight contribution to the heating of a cesium vapor laser is due to Cs 6P quenching, contrary to previous studies. We also discuss additional possible sources of energy transfer from upper excited states of Cs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.009676 | DOI Listing |
Nature
January 2025
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Chemistry and Material Science, No.96, JinZhai Road Baohe District, 230026, Hefei, CHINA.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials have great potential for applications in ultrahigh-definition (UHD) organic light-emitting diode (OLED) displays, that benefit from their narrowband emission characteristic. However, key challenges such as aggregation-caused quenching (ACQ) effect and slow triplet-to-singlet spin-flip process, especially for blue MR-TADF materials, continue to impede their development due to planar skeletons and relatively large ΔESTs. Here, an effective strategy that incorporates multiple carbazole donors into the parent MR moieties is proposed, synergistically engineering their excited states and steric hindrances to enhance both the spin-flip process and quenching resistance.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
A new aggregation-induced emission (AIE) luminogen is obtained by dimerizing acridin-9(10H)-one (Ac), an aggregation-caused quenching (ACQ) effect monomer via an N─N bond and forming 9H,9'H-[10,10'-biacridine]-9,9'-dione (DiAc) with D symmetry. The quenching of DiAc in solution is ascribed to the enhanced basicity promoting hydrogen bonding and then a hydrogen abstraction (HA) reaction and/or an unallowed transition in frontier orbitals with the same symmetry facilitating intersystem crossing. It is found that emissive Ac is one product of the non-emissive DiAc solution in the HA reaction activated by UV irradiation.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.
The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance.
View Article and Find Full Text PDFTalanta
December 2024
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China. Electronic address:
Exosomes, extracellular vesicles crucial for intercellular communication, are emerging as significant biomarkers for disease diagnosis, especially in cancer. This study presented a dual-mode exosome detection platform using polydopamine microspheres doped with iron and zinc ions (PDA@Fe@Zn). These materials served as both artificial receptors for nucleic acid aptamers and nanozymes with peroxidase-like activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!