We present a model based on the Fresnel diffraction scheme for the spatial coherence function of random fields created by scattering optical vortex and perfect vortex beams. By using the spatial coherence function we showed analytically, numerically, and experimentally the dependence and independence of the speckle size of an optical vortex and perfect optical vortex (POV) with a topological charge, respectively. We also showed in both cases the linear dependence of speckle size on the distance of propagation. Furthermore, we describe a regime in which the spatial coherence function is nonevolving for the optical vortex beam and the POV beam with the propagation distance.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.36.000518DOI Listing

Publication Analysis

Top Keywords

optical vortex
20
vortex beam
12
spatial coherence
12
coherence function
12
perfect optical
8
vortex perfect
8
speckle size
8
vortex
7
optical
5
spatial
4

Similar Publications

Observation of Intricate Chiral Optical Force in a Spin-Curl Light Field.

Phys Rev Lett

December 2024

Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

Harnessing chiral optical forces facilitates numerous applications in enantioselective sorting and sensing. To date, significant challenges persist in substantiating the holistic complex theorem of these forces as experimental demonstrations employ common light waves (e.g.

View Article and Find Full Text PDF

The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Spin-Orbit-Locking Vectorial Metasurface Holography.

Adv Mater

December 2024

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.

Vectorial metasurface holography, allowing for independent control over the amplitude, phase, and polarization distribution of holographic images enabled by metasurfaces, plays a crucial role in the realm of optical display, optical, and quantum communications. However, previous research on vectorial metasurface holography has typically been restricted to single degree of freedom input and single channel output, thereby demonstrating a very limited modulation capacity. This work presents a novel method to achieve multi-channel vectorial metasurface holography by harnessing spin-orbit-locking vortex beams.

View Article and Find Full Text PDF

Coherence vortices by binary pinholes.

Nanophotonics

November 2024

Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.

Singularity in a two-point complex coherence function, known as coherence vortices, represents zero visibility with a helical phase structure. In this paper, we introduce a novel technique to generate the coherence vortices of different topological charges by incoherent source transmittance with exotic structured binary pinholes. The binary pinhole structures have been realized by lithography, followed by wet etching methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!