Detecting the interference fringes of the optical synthetic aperture is the core in preventing misalignments of the sub-mirrors in piston, tip, and tilt. These fringes are characterized as follows: (1) the edge information of sub-mirrors is accompanied by complex shapes and large gaps; and (2) the traditional edge detection algorithms have different optimal thresholds under different interference fringes, and they may lose boundary information. To address these problems, a novel method for detecting the edge of synthetic aperture fringe images is proposed. Because conditional generative adversarial networks avoid the difficulty of designing the loss function for specific tasks, they are suitable for our project. We trained over 8000 images based on real images and simulated images. Experiments prove that the proposed method can reduce the false detection rate to 0.2, compared with 0.56 by Canny algorithm. This method can also directly detect the fringe edge of the optical synthetic aperture systems, which are accompanied by varied shapes and a growing number of sub-mirrors. When the input images lose boundary information, the traditional algorithm does not restore the boundary, but the proposed method makes a decision globally, and thus it guesses and then fills the boundary. The maximum error of the generated boundary and the actual boundary is two pixels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.58.002782 | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFNat Commun
January 2025
The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Nat Commun
January 2025
Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.
Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!