Influence of intravenous contrast agent on dose calculation in proton therapy using dual energy CT.

Phys Med Biol

Département de Physique, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada. Author to whom any correspondence should be addressed.

Published: June 2019

The purpose of this study is to evaluate the effect of an intravenous (IV) contrast agent on proton therapy dose calculation using dual-energy computed tomography (DECT). Two DECT methods are considered. The first one, [Formula: see text], attempts to accurately predict the proton stopping powers relative to water (SPR) of contrast enhanced (CE) DECT images, while the second generates a virtual non-contrast (VNC) volume that can be processed as a native non-contrast (NC) one. Both methods are compared against single-energy computed tomography (SECT). The accuracy of SPR predicted for different concentrations of IV contrast diluted in water is first evaluated using simulated data. Results then are validated in an experimental set-up comparing SPR predictions for both NC and CE images to measurements made with a multi-layer ionisation chamber (MLIC). Finally, the impact of IV contrast on dose calculation using both SECT and DECT is evaluated for one liver and one head and neck patient. Using simulated data, DECT is shown to be less sensitive to the presence of IV contrast than SECT, although the performance of the [Formula: see text] method is sensitive to the level of beam hardening considered. For different concentrations of IV contrast diluted in water, experimental MLIC measurement of SPR agrees with DECT predictions within 3% while SECT introduce errors above 20%. This error in the SPR value results in a range error of up to 3.2 mm (2.6%) for proton beams calculated on SECT CE patient images. The error is reduced below 1 mm using DECT with the [Formula: see text] and VNC methods. Globally, it is observed that the influence of IV contrast on proton therapy dose calculation is mitigated using DECT over SECT. In patient anatomies, the VNC approach provides the best agreement with the reference dose distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab1e9dDOI Listing

Publication Analysis

Top Keywords

dose calculation
16
proton therapy
12
[formula text]
12
contrast
8
intravenous contrast
8
contrast agent
8
therapy dose
8
computed tomography
8
dect
8
concentrations contrast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!