Influenza A viruses are able to adapt to restrictive conditions due to their high mutation rates. Importin-α7 is a component of the nuclear import machinery required for avian-mammalian adaptation and replicative fitness in human cells. Here, we elucidate the mechanisms by which influenza A viruses may escape replicative restriction in the absence of importin-α7. To address this question, we assessed viral evolution in mice lacking the importin-α7 gene. We show that three mutations in particular occur with high frequency in the viral nucleoprotein (NP) protein (G102R, M105K and D375N) in a specific structural area upon in vivo adaptation. Moreover, our findings suggest that the adaptive NP mutations mediate viral escape from importin-α7 requirement likely due to the utilization of alternative interaction sites in NP beyond the classical nuclear localization signal. However, viral escape from importin-α7 by mutations in NP is, at least in part, associated with reduced viral replication highlighting the crucial contribution of importin-α7 to replicative fitness in human cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.14868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!