Neonates experience dramatic changes in the disposition of drugs after birth as a result of enzyme maturation and environmental adjustment, challenging therapeutic decision making. In this research, we establish postnatal age, postmenstrual age, and body weight as physiologically reasonable predictors of morphine's clearance in neonates. By integrating knowledge of bilirubin, morphine, and other drugs metabolized by glucuronidation pathways from previously published studies, we hypothesize that uridine diphosphate glucuronic acid, a postnatal age-dependent sugar, plays an important role in the metabolism of morphine during the first week of life. This finding can be extended to other drugs metabolized by uridine diphosphate glucuronosyltransferase pathways in neonates and thus has important clinical implications for the use of drugs in this population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656938PMC
http://dx.doi.org/10.1002/psp4.12407DOI Listing

Publication Analysis

Top Keywords

uridine diphosphate
12
diphosphate glucuronic
8
glucuronic acid
8
metabolism morphine
8
morphine week
8
drugs metabolized
8
postnatal age-related
4
age-related uridine
4
acid rate-limiting
4
rate-limiting factor
4

Similar Publications

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

[Precision Medicine for Patients with Renal Cell Carcinoma Based on Drug-metabolizing Enzyme Expression Levels].

Yakugaku Zasshi

January 2025

Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.

Notable advances have recently been achieved in drug therapies for renal cell carcinoma (RCC). Several tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have been approved for metastatic RCC (mRCC). The current first-line treatment for mRCC involves combination therapies using TKIs and ICIs.

View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris.

Enzyme Microb Technol

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:

Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.

View Article and Find Full Text PDF

The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila.

Cell Rep

December 2024

Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China. Electronic address:

Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!