Osteoarthritis (OA) is a degenerative joint disease characterised by a progressive degradation of articular cartilage and underlaying bone and is associated with pain and disability. Currently, there is no medical treatment to reverse or even retard OA. Based on our previous reports, where we establish the repair potential of short Link N (sLN) in the intervertebral disc, a cartilage-like tissue, we hypothesise that sLN may hold similar promises in the repair of articular cartilage. This study aimed to determine if sLN, could prevent OA disease progression. Skeletally mature New Zealand white rabbits underwent unilateral anterior cruciate ligament transection (ACLT) of their left femorotibial joints to induce joint degeneration typical of OA. Beginning 3 weeks post-operatively, and every three weeks thereafter for 12 weeks, either saline (1 mL) or sLN (100 μg in 1 mL saline) was injected intraarticularly into the operated knee. Six additional rabbits underwent sham surgery but without ACLT or post-operative injections. The effects on gross joint morphology and cartilage histologic changes were evaluated. In the Saline group, prominent erosion of articular cartilage occurred in both femoral condyle compartments and the lateral compartment of the tibial plateau while, sLN treatment reduced the severity of the cartilage damage in these compartments of the knee showing erosion. Furthermore, statistically significant differences were detected between the joint OA score of the saline and sLN treated groups (p = 0.0118). Therefore, periodic intraarticular injection of sLN is a promising nonsurgical treatment for preventing or retarding OA progression, by reducing cartilage degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.22203/eCM.v037a21 | DOI Listing |
Cells
December 2024
Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany.
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China.
Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA.
Background: Continued advancements in cartilage surgery and an accumulating body of evidence warrants a contemporary synthesis of return to sport (RTS) outcomes to provide updated prognostic data and to better understand treatment response.
Purpose: To perform an updated systematic review of RTS in athletes after knee cartilage restoration surgery.
Study Design: Systematic review; Level of evidence, 4.
J Gene Med
January 2025
Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Affiliated Hospital of Naval Medical University), Shanghai, China.
Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!