Neuroinflammatory diseases are characterized by blood-brain barrier disruption (BBB) and leukocyte infiltration. We investigated the involvement of monocyte recruitment in visual pathway damage provoked by primary optic neuritis (ON) induced by a microinjection of bacterial lipopolysaccharide (LPS) into the optic nerve from male Wistar rats. Increased Evans blue extravasation and cellularity were observed at 6 h post-LPS injection. In WT-GFPþ/WT chimeric rat optic nerves, the presence of GFP(+) neutrophils and GFP(+) monocytes, and in wild-type rat optic nerves, an increase in CD11bCD45 and CD11bCD45 cell number, were observed at 24 h post-LPS. Gamma-irradiation did not affect the increase in BBB permeability, but significantly lessened the decrease in pupil light reflex (PLR), and retinal ganglion cell (RGC) number induced by LPS. At 6 h post-LPS, an increase in chemokine (C-C motif) ligand 2 (CCL2) immunoreactivity co-localized with neutrophils (but not microglia/macrophages or astrocytes) was observed, while at 24 h post-injection, an increase in Iba-1-immunoreactivity and its co-localization with CCL2 became evident. The co-injection of LPS with bindarit (a CCL2 synthesis inhibitor) lessened the effect of LPS on PLR, and RGC loss. The treatment with etoposide or gadolinium chloride that significantly decreased peripheral monocyte (but not neutrophil or lymphocyte) percentage decreased the effect of LPS on PLR, and RGC number. Moreover, a negative correlation between PRL and monocyte (but not lymphocyte or neutrophil) percentage was observed at 7 days post-LPS. Taken together, these results support that monocytes are key players in the initial events that take place during primary ON.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-019-1608-0DOI Listing

Publication Analysis

Top Keywords

monocyte recruitment
8
optic nerve
8
optic neuritis
8
6 h post-lps
8
rat optic
8
optic nerves
8
observed 24 h
8
rgc number
8
lps plr
8
plr rgc
8

Similar Publications

Background: Atherosclerosis is a lipid-driven inflammatory disease characterized by plaque formation in major arteries. These plaques contain lipid-rich macrophages that accumulate through monocyte recruitment, local macrophage differentiation, and proliferation.

Objective: We identify the macrophage subsets that are closely related to atherosclerosis and reveal the key pathways in the progression of atherosclerotic disease.

View Article and Find Full Text PDF

Background: Emerging evidence suggests that increased perirenal adipose tissue (PAT) may trigger systemic inflammation and oxidative stress, potentially contributing to hyperuricemia (HUA). This study aimed to explore the link between PAT and HUA risk, and the potential mediating role of inflammation and oxidative stress.

Methods: This study recruited 903 participants with T2DM.

View Article and Find Full Text PDF

Novel T-cell subsets as non-invasive biomarkers of vascular damage along the predialysis stages of chronic kidney disease.

Front Med (Lausanne)

December 2024

Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.

Introduction: Cardiovascular disease is the major cause of premature death in chronic kidney disease (CKD) and vascular damage is often detected belatedly, usually evaluated by expensive and invasive techniques. CKD involves specific risk factors that lead to vascular calcification and atherosclerosis, where inflammation plays a critical role. However, there are few inflammation-related markers to predict vascular damage in CKD.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus) is a leading cause of Periprosthetic  joint  infection (PJI), a severe complication after joint arthroplasty. Immunosuppression is a major factor contributing to the infection chronicity of S.

View Article and Find Full Text PDF

Bromodomain and extra-terminal domain (BET) proteins, including BRD4, bind acetylated chromatin and co-activate gene transcription. A BET inhibitor, JQ1, prevents and reverses pathological cardiac remodeling in preclinical models of heart failure. However, the underlying cellular mechanisms by which JQ1 improves cardiac structure and function remain poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!