AI Article Synopsis

  • Chemotherapy often struggles with drug resistance and side effects, but innovative drug delivery systems are being developed to improve treatment efficacy.
  • A novel amphoteric calix[4]arene was synthesized using a green method and coated on magnetic nanoparticles, allowing for the targeted delivery of doxorubicin and methotrexate to MCF7 cancer cells.
  • Research showed that this new nanocarrier efficiently delivers both drugs and effectively kills cancer cells, indicating its potential for further testing in animal studies for breast cancer treatment.

Article Abstract

Background: Chemotherapy as an important tool for cancer treatment faces many obstacles such as multidrug resistance and adverse toxic effects on healthy tissues. Drug delivery systems has opened a new window to overcome these problems. There has been a strong interest development of new platform and system for delivof chemotherapeutic agents.

Purpose: In the present study, a green synthesis method was chosen and performed for preparation of a novel amphoteric calix[4]arene (Calix) macrocycle with low toxicity to the human body.

Materials And Methods: The amphoteric Calix was coated on the surface of FeO magnetic nanoparticles and used as a magnetic nanocarrier for simultaneous delivery of two anticancer agents, doxorubicin and methotrexate, against MCF7 cancer cells. Several chemical characterizations were done for validation of prepared nanocarrier, and in vitro loading and release studies of drugs were performed with good encapsulation efficiency.

Results: In vitro biological studies including hemolysis assay, erythrocytes sedimentation rate, red blood cells aggregation, cyto cellular internalization, and apoptosis evaluations were performed. Based on results, the developed nanocarrier has many advantages and capability for an efficient codelivery of DOX and MTX, which has a highly potent ability to kill cancer cells.

Conclusion: All these results persuade us, this nanocarrier could be effectively used for cancer therapy of MCF7 breast cancer cells and is suitable for use in further animal studies in future investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472283PMC
http://dx.doi.org/10.2147/IJN.S194596DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
amphoteric calix[4]arene
8
magnetic nanocarrier
8
nanocarrier simultaneous
8
simultaneous delivery
8
delivery anticancer
8
breast cancer
8
cancer
6
nanocarrier
5
needle-shaped amphoteric
4

Similar Publications

Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma.

FEBS J

January 2025

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.

In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.

View Article and Find Full Text PDF

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

Synthesis and Application of a Novel Multifunctional Nanoprodrug for Synergistic Chemotherapy and Phototherapy with Hydrogen Sulfide Gas.

J Med Chem

January 2025

Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China.

With the dilemma of limited efficacy of individual therapies, it is crucial to develop innovative combination therapy systems to target the complex pathogenesis of cancer. In this study, we designed a nanoprodrug ISL@MIL-101-ADT to facilitate synergistic delivery of hydrogen sulfide (HS) and prodrug ISL for specific eradication of tumor cells with minimal toxicity and maximal efficacy. The nanoprodrug passively targeted tumors through enhanced permeation and retention effects, followed by disintegration and release of IR780, lonidamine (LND), and HS.

View Article and Find Full Text PDF

Purpose: Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the tumorigenesis and progression of various cancers. However, the functional roles of lncRNAs in papillary thyroid cancer (PTC) remain unclear. In this study, we investigated the functional role of the lncRNA FAM111A-DT in PTC progression and the underlying mechanisms.

View Article and Find Full Text PDF

Bio-Conjugated Carbon Quantum Dots for Intracellular Uptake and Bioimaging Applications.

J Fluoresc

January 2025

Department of Medical Biotechnology and Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416 006, India.

Carbon quantum dots (CQDs) demonstrate outstanding biocompatibility and optical properties, making them ideal for monitoring cellular uptake. Due to their ultra-small size (typically < 10 nm) and fluorescent nature, CQDs hold significant potential as nanoparticles for bioimaging and tracking intracellular processes. The study examined the optimization parameters for conjugating calf thymus DNA (Ct-DNA) to CQDs to facilitate Ct-DNA internalization in mouse fibroblast cells (L929) and human breast cancer cells (MCF-7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!