Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/STROKEAHA.119.024965 | DOI Listing |
J Pharmacol Sci
February 2025
Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.
View Article and Find Full Text PDFNeurocrit Care
January 2025
Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Background: Intracranial hemorrhage (ICH) is a devastating stroke subtype with a high rate of mortality and disability. Therapeutic options available are primarily limited to supportive care and blood pressure control, whereas the surgical approach remains controversial. In this study, we explored the effects of noninvasive vagus nerve stimulation (nVNS) on hematoma volume and outcome in a rat model of collagenase-induced ICH.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.
Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) are key imaging markers of primary and secondary brain injury in hemorrhagic stroke. Accurate segmentation and quantification of ICH and PHE can help with prognostication and guide treatment planning. In this study, we combined Swin-Unet Transformers with nnU-NETv2 convolutional network for segmentation of ICH and PHE on non-contrast head CTs.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.
: Intracerebral hemorrhages (ICH) and perihematomal edema (PHE) are respective imaging markers of primary and secondary brain injury in hemorrhagic stroke. In this study, we explored the potential added value of PHE radiomic features for prognostication in ICH patients. : Using a multicentric trial cohort of acute supratentorial ICH ( = 852) patients, we extracted radiomic features from ICH and PHE lesions on admission non-contrast head CTs.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.
Intracerebral hemorrhage (ICH) is a devastating form of stroke with a lack of effective treatments. Following disease onset, ICH activates microglia and recruits peripheral leukocytes into the perihematomal region to amplify neural injury. Bruton's tyrosine kinase (BTK) controls the proliferation and survival of various myeloid cells and lymphocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!