High-resolution angle sensor using multiple peak positions of a double slit interference pattern.

Rev Sci Instrum

Center for Optical Metrology, Division of Physical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu 305-340, South Korea.

Published: April 2019

A high-resolution angle sensor which uses a double slit (DS) is proposed. By analyzing the positions of intensity peaks in the DS interference pattern, the incident angle of a collimated beam entering the DS is measured. The DS was designed to generate the multiple-order interference pattern with almost even modulation amplitude so that not only the central peak but also multiple side peaks could be used for the measurement. By averaging the incident angle values obtained from each peak position, the angle sensor achieved higher resolution and a smaller periodic nonlinearity error. The performance of the DS angle sensor was tested by comparison with a commercial autocollimator. The Allan deviation of the readout of the angle sensor was 0.0002 in. with the averaging time of 4 s, and the periodic nonlinearity error was evaluated to be less than 0.01 in.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5089899DOI Listing

Publication Analysis

Top Keywords

angle sensor
20
interference pattern
12
high-resolution angle
8
double slit
8
incident angle
8
periodic nonlinearity
8
nonlinearity error
8
angle
6
sensor
5
sensor multiple
4

Similar Publications

Angle-controlled strong and weak coupling in photon molecules.

Sci Rep

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

With the digital transformation of the manufacturing industry, data monitoring and collecting in the manufacturing process become essential. Pointer meter reading recognition (PMRR) is a key element in data monitoring throughout the manufacturing process. However, existing PMRR methods have low accuracy and insufficient robustness due to issues such as blur, uneven illumination, tilt, and complex backgrounds in meter images.

View Article and Find Full Text PDF

Over recent years, automated Human Activity Recognition (HAR) has been an area of concern for many researchers due to its widespread application in surveillance systems, healthcare environments, and many more. This has led researchers to develop coherent and robust systems that efficiently perform HAR. Although there have been many efficient systems developed to date, still, there are many issues to be addressed.

View Article and Find Full Text PDF

The frequency diverse array (FDA) is an architecture capable of beamforming in both range and angle, improving upon the traditional phased array (PA) which can only achieve beamforming in angle. The FDA employing directional modulation (DM) for secure directional communications (SDC) can reduce bit error rates (BERs) in both range and angle, again improving upon the traditional PA which can only reduce BER in angle. In this paper, we document the challenges involved in the design and implementation of a two-element linear FDA employing fast-time binary phase-shift keying (BPSK) modulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!