Many novel and promising single-photon avalanche diodes (SPADs) emerged in recent years. However, some of them may demonstrate a very high dark count rate, even tens of megahertz, especially during the development phase or at room temperature, posing new challenges to device characterization. Gating operation with a width of 10 ns can be used to suppress the dark counts not coincident with the photon arriving time. However, as a side effect of the fast-gating operation, the gating response could be much higher than the avalanche signal and is usually removed by various circuit-based cancellation techniques. Here, we present an alternative method. A high-speed digital storage oscilloscope (DSO) is used to extract the weak avalanche signals from the large gating response background by waveform subtraction in software. Consequently, no complex circuit and precise tuning for each SPAD are needed. The avalanche detection threshold can be reduced to 5% of the full vertical scale of the DSO or 5 mV, whichever is greater. The timing resolution can be better than 2 ps for typical avalanche signals. Optical alignment and calibration are easy. The feasibility of on-wafer test with an RF probe station is discussed. All the advantages and features listed above make this method very useful in new SPAD research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5041502 | DOI Listing |
Nat Nanotechnol
December 2024
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Colloidal quantum dots (CQDs) are promising for infrared photodetectors with high detectivity and low-cost production. Although CQDs enable photoinduced charge multiplication, thermal noise in low-bandgap materials limits their performance in IR detectors. Here we present a pioneering architecture of a CQD-based infrared photodetector that uses kinetically pumped avalanche multiplication.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Gusshausstrasse 25/E354-02, A-1040 Wien, Austria.
It is shown that the integration of a single-photon avalanche diode (SPAD) together with a BiCMOS gating circuit on one chip reduces the parasitic capacitance a lot and therefore reduces the avalanche build-up time. The capacitance of two bondpads, which are necessary for the connection of an SPAD chip and a gating chip, are eliminated by the integration. The gating voltage transients of the SPAD are measured using an integrated mini-pad and a picoprobe.
View Article and Find Full Text PDFChem Soc Rev
December 2024
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
Photon avalanche (PA)-where the absorption of a single photon initiates a 'chain reaction' of additional absorption and energy transfer events within a material-is a highly nonlinear optical process that results in upconverted light emission with an exceptionally steep dependence on the illumination intensity. Over 40 years following the first demonstration of photon avalanche emission in lanthanide-doped bulk crystals, PA emission has been achieved in nanometer-scale colloidal particles. The scaling of PA to nanomaterials has resulted in significant and rapid advances, such as luminescence imaging beyond the diffraction limit of light, optical thermometry and force sensing with (sub)micron spatial resolution, and all-optical data storage and processing.
View Article and Find Full Text PDFAVS Quantum Sci
December 2024
Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA.
Single-photon detectors (SPDs) are ubiquitous in many protocols for quantum imaging, sensing, and communications. Many of these protocols critically depend on the precise knowledge of their detection efficiency. A method for the calibration of SPDs based on sources of quantum-correlated photon pairs uses single-photon detection to generate heralded single photons, which can be used as a standard of radiation at the single-photon level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!