Ferromagnetic core based magnetic switches are widely used in various pulsed power facilities. The dynamic characteristics of high-power magnetic switches, which have important impacts on the pulse modulation process, are analyzed via an improved numerical model in this paper. The model is established by simultaneously solving the circuit equations and the magnetic field diffusion equations. An implicit finite difference method is used in solving the diffusion equations, which has no numerical convergence problems, and the Jiles-Atherton model is used to obtain an accurate hysteresis loop of the core. The improved model predicts the performance of the magnetic switch quite well. It is then used to analyze the detailed dynamic saturation process of a core, and the core's saturation time predicted by the model is consistent with the experimental data, the error being less than 5%. Furthermore, the interlamination electric field is calculated and analyzed, and it is predicted that breakdown is most likely to occur at the inner side of the core and at the edge of the lamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5064451 | DOI Listing |
Small
January 2025
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.
A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
The coordination compounds featuring a {CuO} core, typically bridged by hydroxo or alkoxo groups, are particularly intriguing due to their notable magnetic properties and catalytic activity. In this study, we explored the synthesis and characterization of four new Schiff base ligands and their subsequent complexation with Cu salts, which resulted in the formation of three tetranuclear complexes: [Cu(L)]·2HO (1), [Cu(L)(HL)](Cl)(NO)·5HO (2), and [Cu(L)] (3), as well as one dinuclear complex: [Cu(L)] (4). These tetranuclear complexes all feature a {CuO} core, but with differing coordination environments around the Cu centers.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Institute of Engineering & Management, Department of Basic Science and Humanities, Institute of Engineering & Management, Salt Lake Electronics Complex, Sector V, Salt Lake, Kolkata 700091, India, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Road, Action Area III, Newtown, Kolkata 700160, India, Calcutta, West Bengal, 700091, INDIA.
A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials Science and Engineering, University of Texas Dallas 800 W Campbell Rd Richardson TX 75080 USA
Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!