This work describes a method for measuring the thin film thickness using total internal reflection fluorescence microscopy, with the use of evanescent wave illumination. The thin liquid film was formed in a hole drilled at the center of a porous plate, which is used for measurement of the disjoining pressure by using the Scheludko cell method. The aim of simultaneous and in situ measurements of thin film thickness and disjoining pressure is to obtain the relationship between them, which is critical for explicitly depicting the thin film profile that determines the interfacial mass and heat fluxes in the thin film region near the triple line. This method can overcome the drawbacks of the optical methods that are insufficient for measuring the thickness of a thin film with curvature. The influence of structural forces formed by tracer nanoparticles seeded in the thin liquid film on the relationship was analyzed. The obtained expression for disjoining pressure vs thin film thickness provides a basis for analyzing the formation, evolution, and stability of the thin liquid film, which is the dominant mechanism of controlling the mesoscopic structure in many transport processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5058218 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.
Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
We have found that surface superstructures made of "monolayer alloys" of Tl and Pb on Si(111), having giant Rashba effect, produce nonreciprocal spin-polarized photocurrent via circular photogalvanic effect (CPGE) by obliquely shining circularly polarized near-infrared (IR) light. CPGE is here caused by the injection of in-plane spin into spin-split surface-state bands, which is observed only on Tl-Pb alloy layers but not on single-element Tl nor Pb layers. In the Tl-Pb monolayer alloys, despite their monatomic thickness, the magnitude of CPGE is comparable to or even larger than the cases of many other spin-split thin-film materials.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!