We present results from experiments and molecular dynamics (MD) simulations obtained with C and Au impacting on free-standing graphene, graphene oxide (GO), and graphene-supported molecular layers. The experiments were run on custom-built ToF reflectron mass spectrometers with C and Au-LMIS sources with acceleration potentials generating 50 keV C and 440-540 keV Au . Bombardment-detection was in the same mode as MD simulation, i.e., a sequence of individual projectile impacts with separate collection/identification of the ejecta from each impact in either the forward (transmission) or backward (reflection) direction. For C impacts on single layer graphene, the secondary ion (SI) yields for C and C emitted in transmission are ∼0.1 (10%). Similar yields were observed for analyte-specific ions from submonolayer deposits of phenylalanine. MD simulations show that graphene acts as a trampoline, i.e., they can be ejected without destruction. Another topic investigated dealt with the chemical composition of free-standing GO. The elemental composition was found to be approximately COH. We have also studied the impact of Au clusters on graphene. Again SI yields were high (e.g., 1.25 C/impact). 90-100 Au atoms evaporate off the exiting projectile which experiences an energy loss of ∼72 keV. The latter is a summation of energy spent on rupturing the graphene, ejecting carbon atoms and clusters and a dipole projectile/hole interaction. The charge distribution of the exiting projectiles is ∼50% neutrals and ∼25% either negatively or positively charged. We infer that free-standing graphene enables detection of attomole to zeptomole deposits of analyte via cluster-SI mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5080606DOI Listing

Publication Analysis

Top Keywords

graphene
8
free-standing graphene
8
hypervelocity cluster
4
cluster ion
4
ion impacts
4
impacts free
4
free standing
4
standing graphene
4
graphene experiment
4
experiment theory
4

Similar Publications

This study synthesises expanded graphite (EG) from graphitised carbon from waste polyethylene terephthalate (PET) bottles. The adsorbent material was characterised using FTIR, XRF, XRD, SEM, Raman Spectroscopy, and BET surface area analysis. The synthesised EG defluorinated wastewater, utilising response surface methodology (RSM) for experimental design and optimisation.

View Article and Find Full Text PDF

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Comparison of microplastics heteroaggregation with MoS and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.

View Article and Find Full Text PDF

Magnetic field-oriented conductive decellularized extracellular matrix hydrogel synergizes with electrical stimulation to promote spinal cord injury repair and electrophysiological function restoration.

Biomater Adv

December 2024

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:

Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!