HIV-1 is dependent on the host cell for providing the metabolic resources for completion of its viral replication cycle. Thus, HIV-1 replicates efficiently only in activated CD4+ T cells. Barriers preventing HIV-1 replication in resting CD4+ T cells include a block that limits reverse transcription and also the lack of activity of several inducible transcription factors, such as NF-κB and NFAT. Because FOXO1 is a master regulator of T cell functions, we studied the effect of its inhibition on T cell/HIV-1 interactions. By using AS1842856, a FOXO1 pharmacologic inhibitor, we observe that FOXO1 inhibition induces a metabolic activation of T cells with a G0/G1 transition in the absence of any stimulatory signal. One parallel outcome of this change is the inhibition of the activity of the HIV restriction factor SAMHD1 and the activation of the NFAT pathway. FOXO1 inhibition by AS1842856 makes resting T cells permissive to HIV-1 infection. In addition, we found that FOXO1 inhibition by either AS1842856 treatment or upon FOXO1 knockdown induces the reactivation of HIV-1 latent proviruses in T cells. We conclude that FOXO1 has a central role in the HIV-1/T cell interaction and that inhibiting FOXO1 with drugs such as AS1842856 may be a new therapeutic shock-and-kill strategy to eliminate the HIV-1 reservoir in human T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513100 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1007669 | DOI Listing |
Dev Dyn
January 2025
Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
Objective: This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions.
Methods: PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively.
Ecotoxicol Environ Saf
January 2025
Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China. Electronic address:
The extensive use of antibiotics and their persistence in the environment have seriously threatened marine ecosystems in recent years. The frequent occurrence of extreme weather due to climate change has also increased the uncertainty of effective toxicity identification and risk assessment of the chemicals of concern. This study aimed to investigate the toxic effects and potential mechanisms of florfenicol (0.
View Article and Find Full Text PDFCells
December 2024
Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain.
Autophagy is a catabolic process involved in different cellular functions. However, the molecular pathways governing its potential roles in different cell types remain poorly understood. We investigated the role of autophagy in the context of proteotoxic stress in two central nervous system cell types: the microglia-like cell line BV2 and the neuronal-like cell line N2a.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China. Electronic address:
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!