Electrical synapses represent a widespread modality of interneuronal communication in the mammalian brain. These contacts, by lowering the effectiveness of random or temporally uncorrelated inputs, endow circuits of coupled neurons with the ability to selectively respond to simultaneous depolarizations. This mechanism may support coincidence detection, a property involved in sensory perception, organization of motor outputs, and improvement signal-to-noise ratio. While the role of electrical coupling is well established, little is known about the contribution of the cellular excitability and its modulations to the susceptibility of groups of neurons to coincident inputs. Here, we obtained dual whole cell patch-clamp recordings of pairs of mesencephalic trigeminal (MesV) neurons in brainstem slices from rats to evaluate coincidence detection and its determinants. MesV neurons are primary afferents involved in the organization of orofacial behaviors whose cell bodies are electrically coupled mainly in pairs through soma-somatic gap junctions. We found that coincidence detection is highly heterogeneous across the population of coupled neurons. Furthermore, combined electrophysiological and modeling approaches reveal that this heterogeneity arises from the diversity of MesV neuron intrinsic excitability. Consistently, increasing these cells' excitability by upregulating the hyperpolarization-activated cationic current () triggered by cGMP results in a dramatic enhancement of the susceptibility of coupled neurons to coincident inputs. In conclusion, the ability of coupled neurons to detect coincident inputs is critically shaped by their intrinsic electrophysiological properties, emphasizing the relevance of neuronal excitability for the many functional operations supported by electrical transmission in mammals. We show that the susceptibility of pairs of coupled mesencephalic trigeminal (MesV) neurons to coincident inputs is highly heterogenous and depends on the interaction between electrical coupling and neuronal excitability. Additionally, upregulating the hyperpolarization-activated cationic current () by cGMP results in a dramatic increase of this susceptibility. The and electrical synapses have been shown to coexist in many neuronal populations, suggesting that modulation of this conductance could represent a common strategy to regulate circuit operation supported by electrical coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00029.2019 | DOI Listing |
eNeuro
January 2025
Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, U.S.A.
The anterior hypothalamic area (AHA) is a key brain region for orchestrating defensive behaviors. Using in vivo calcium imaging in mice, we observed that AHA neuronal activity increases during foot shock delivery and foot-shock associated auditory cues. We found that following shock-induced increases in AHA activity, a decrease in activity coincides with the onset of grooming behavior.
View Article and Find Full Text PDFPharmacol Res
January 2025
Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States. Electronic address:
Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.
View Article and Find Full Text PDFBrain Commun
January 2025
Centre for Cognitive Neuroscience, University of Salzburg, 5020 Salzburg, Austria.
Former studies have established that individuals with a cochlear implant (CI) for treating single-sided deafness experience improved speech processing after implantation. However, it is not clear how each ear contributes separately to improve speech perception over time at the behavioural and neural level. In this longitudinal EEG study with four different time points, we measured neural activity in response to various temporally and spectrally degraded spoken words presented monaurally to the CI and non-CI ears (5 left and 5 right ears) in 10 single-sided CI users and 10 age- and sex-matched individuals with normal hearing.
View Article and Find Full Text PDFJ Neurosci
January 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102.
We aimed to identify the neuronal correlates of performance errors in a difficult timing task. Male rats were trained to seek ewards and avoid hocks depending on the position of photic conditioned stimuli (CS- and CS-, respectively). Then, they were exposed to conflict trials where they had to time the interval between the CS-R and CS-S to obtain rewards while avoiding footshocks.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Translational Imaging Centre, Houston Methodist Research Institute, Houston, TX 77030, USA.
Objective: To develop an unsupervised artificial intelligence algorithm for identifying and quantifying the presence of false lumen thrombosis (FL) after Frozen Elephant Trunk (FET) operation in computed tomography angiographic (CTA) images in an interdisciplinary approach.
Methods: CTA datasets were retrospectively collected from eight patients after FET operation for aortic dissection from a single center. Of those, five patients had a residual aortic dissection with partial false lumen thrombosis, and three patients had no false lumen or thrombosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!