Starting from the β-adrenoceptor agonist isoprenaline and beta-blocker carvedilol, we designed and synthesized three different chemotypes of agonist/antagonist hybrids. Investigations of ligand-mediated receptor activation using bioluminescence resonance energy transfer biosensors revealed a predominant effect of the aromatic head group on the intrinsic activity of our ligands, as ligands with a carvedilol head group were devoid of agonistic activity. Ligands composed of a catechol head group and an antagonist-like oxypropylene spacer possess significant intrinsic activity for the activation of Gα, while they only show weak or even no β-arrestin-2 recruitment at both β- and β-AR. Molecular dynamics simulations suggest that the difference in G protein efficacy and β-arrestin recruitment of the hybrid ( S)-22, the full agonist epinephrine, and the β-selective, G protein-biased partial agonist salmeterol depends on specific hydrogen bonding between Ser and Asn, and the aromatic head group of the ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.9b00349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!