FeO nanoparticles (NPs) with an average size of 8-10 nm have been successfully functionalized with various surface-treatment agents to serve as model systems for probing surface chemistry-dependent electrochemistry of the resulting electrodes. The surface-treatment agents used for the functionalization of FeO anode materials were systematically varied to include aromatic or aliphatic structures: 4-mercaptobenzoic acid, benzoic acid (BA), 3-mercaptopropionic acid, and propionic acid (PA). Both structural and electrochemical characterizations have been used to systematically correlate the electrode functionality with the corresponding surface chemistry. Surface treatment with ligands led to better FeO dispersion, especially with the aromatic ligands. Electrochemistry was impacted where the PA- and BA-treated FeO systems without the -SH group demonstrated a higher rate capability than their thiol-containing counterparts and the pristine FeO. Specifically, the PA system delivered the highest capacity and cycling stability among all samples tested. Notably, the aromatic BA system outperformed the aliphatic PA counterpart during extended cycling under high current density, due to the improved charge transfer and ion transport kinetics as well as better dispersion of FeO NPs, induced by the conjugated system. Our surface engineering of the FeO electrode presented herein, highlights the importance of modifying the structure and chemistry of surface-treatment agents as a plausible means of enhancing the interfacial charge transfer within metal oxide composite electrodes without hampering the resulting tap density of the resulting electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b21273 | DOI Listing |
J Dent
January 2025
DDS, MS, PhD, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil. Electronic address:
Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.
Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).
Materials (Basel)
December 2024
Independent Researcher, P.O. Box 60169-38, Riyadh 11545, Saudi Arabia.
This study aimed to evaluate the change in enamel color and surface micro-hardness following the use of resin-infiltration concept material (ICON) and casein phosphopeptide-amorphous calcium fluoride phosphate (CPP-ACFP) remineralizing agent. Fifty-four extracted human third molars were collected and randomly divided into three groups: group A: control with no surface treatment; group B: treated using ICON; and group C: treated using CPP-ACFP. The change in color and micro-hardness of the enamel surface were measured using spectrophotometer and Vickers hardness number, respectively.
View Article and Find Full Text PDFJ Stomatol Oral Maxillofac Surg
December 2024
Reader, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India. Electronic address:
Purpose: This in-vitro study aimed to compare the shear bond strength (SBS) of cobalt-chromium (Co-Cr) crowns on Corticobasal® implant abutments, evaluating the effects of two surface treatments and two luting agents.
Materials And Methods: Thirty Co-Cr crowns were fabricated using CAD-CAM technology with a direct metal laser sintering process and divided into three groups based on surface treatment: Group I (untreated), Group II (sandblasted with 50 μm Al₂O₃), and Group III (Er: YAG laser etching). Each group was further subdivided based on luting cement: Sub group A (GC Fuji Plus) and Sub group B (Rely X U200).
ACS Appl Bio Mater
December 2024
Department of Inorganic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
Medical devices composed of titanium (Ti) should exhibit antibacterial and osteogenic activities to achieve both infection prevention and rapid bone reconstruction. Here, a Ti surface was modified by performing magnetron sputtering (MS) using pure Mg or Mg-30Ca alloy targets for surface functionalization. MC0, prepared with a pure Mg target, had a crystalline metallic-Mg coating layer, whereas MC30, prepared with an Mg-30Ca alloy target, had an amorphous coating composed of Mg and Ca.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
School of Physics and Technology, Wuhan University, Wuhan 430072, China.
This study focuses on formulating a low-surface-energy, water-resistant, and anti-condensation coating utilizing a fluorocarbon and acrylic resins composite (FAC), enhanced by six functional additives: antistatic agents, water-repellent agents, nanofillers, anti-mold and anti-algae agent, leveling agents, and wetting and dispersing agents. An orthogonal experimental design was implemented to systematically investigate the effects of varying concentrations of these additives on the surface tension of the coating. The results show that the optimized combination of fluorocarbon and acrylic resins composite (OFAC)with functional additives significantly reduces the surface tension, thereby improving both water resistance and anti-condensation properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!