Accumulation of adipose tissue around and within muscles is highly correlated with reduced strength, functional limitations, and poor rehabilitative outcomes. Given the intimate physical contact between these tissues, paracrine cross-talk is a likely mediator of this association. The recent discovery that muscle-associated adipose tissue exhibits features of beige fat has suggested that this cross-talk may be modifiable, as beige fat can be stimulated to assume features of brown fat. In this work, we describe a novel intermuscular fat transplant model in the mouse rotator cuff to investigate cross-talk between muscle and adipose tissue. Specifically, we examine the role of transplanted fat phenotype on muscle regeneration by transplanting pieces of classical brown (interscapular), beige (inguinal), or white (epididymal) adipose tissue in conjunction with cardiotoxin injection to the adjacent supraspinatus muscle. Transplantation of brown fat, but not beige or white, significantly increased muscle mass, fiber cross-sectional area and contractile force production compared with sham injury. This effect was not seen when cardiotoxin was delivered to a distant muscle, or when adjacent muscles were injected with saline indicating that the effect is localized and specifically targeting the regenerative process. Thus, we conclude that local signaling between fat and muscle varies by phenotype and that brown fat supports regeneration. Clinical significance: Our findings suggest that the phenotype of muscle-associated fat could be a novel therapeutic target to modulate fat-muscle signaling. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1817-1826, 2019.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824921 | PMC |
http://dx.doi.org/10.1002/jor.24324 | DOI Listing |
Front Drug Deliv
December 2024
VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA.
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (T) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats.
View Article and Find Full Text PDFVitam Horm
January 2025
Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.
View Article and Find Full Text PDFVitam Horm
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland.
Aldosterone, the primary adrenal mineralocorticoid hormone, as an integral part of the renin-angiotensin-aldosterone system (RAAS), is crucial in blood pressure regulation and maintaining sodium and potassium levels. It interacts with the mineralocorticoid receptor (MR) expressed in the kidney and promotes sodium and water reabsorption, thereby increasing blood pressure. However, MRs are additionally expressed in other cells, such as cardiomyocytes, the endothelium, neurons, or brown adipose tissue cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!