Short telomeres correlate with a strong induction of cellular senescence in human dental follicle cells.

BMC Mol Cell Biol

Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.

Published: April 2019

Background: Dental follicle cells (DFCs) are dental stem cells and interesting options for regenerative therapies in dentistry. However, DFCs acquire replicative senescence in long-term cultures, but little is known about molecular processes. In previous studies, we observed that DFC cell lines become senescent at different rates. We hypothesized that short telomere length and increased DNA damage with genomic instability correlate with the accelerated induction of cellular senescence.

Results: For this study we compared DFC cell lines that became senescent at different rates (DFC_F: strong senescent phenotype; DFC_S: weak senescent phenotype). The telomeres of DFC_F were shorter than those of the telomeres of DFC_S prior senescence. Interestingly, telomere lengths of both cell lines were nearly unchanged after induction of senescence. Gene expression analyses with genes associated with DNA damage before and after the induction of cellular senescence revealed that almost all genes in DFCs_F were down-regulated while the gene expression in DFC_S was almost constitutive. Moreover, number of aneuploid DFC_F were significantly higher after induction of cellular senescence.

Conclusion: Our results supported our initial hypothesis that telomere length and genomic instability correlate with the accelerated induction of cellular senescence in DFC_F.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448245PMC
http://dx.doi.org/10.1186/s12860-019-0185-4DOI Listing

Publication Analysis

Top Keywords

induction cellular
20
cellular senescence
12
cell lines
12
dental follicle
8
follicle cells
8
dfc cell
8
lines senescent
8
senescent rates
8
telomere length
8
dna damage
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!