A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using Bioinformatics and Molecular Biology to Streamline Construction of Effector Libraries for Phytopathogenic Pseudomonas syringae Strains. | LitMetric

The war between plants and their pathogens is endless, with plant resistance genes offering protection against pathogens until the pathogen evolves a way to overcome this resistance. Given how quickly new pathogen strains can arise and defeat plant defenses, it is critical to more rapidly identify and examine the specific genomic characteristics new virulent strains have gained which give them the upper hand. An indispensable tool is bioinformatics. Genome sequencing has advanced rapidly in the last decade, and labs are frequently uploading high-quality genomes of various organisms, including plant pathogenic bacteria such as Pseudomonas syringae. Pseudomonas syringae strains inject several effector proteins into host cells which often overcome host defenses. Probing online genomes provides a way to quickly and accurately predict effector repertoires of Pseudomonas, enabling the cloning of complete effector libraries of newly emerged strains. Here, we describe detailed protocols to rapidly clone bioinformatically predicted P. syringae effectors for various screening applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9458-8_1DOI Listing

Publication Analysis

Top Keywords

pseudomonas syringae
12
effector libraries
8
syringae strains
8
strains
5
bioinformatics molecular
4
molecular biology
4
biology streamline
4
streamline construction
4
effector
4
construction effector
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!