Self-Assembly of Charge-Containing Copolymers at the Liquid-Liquid Interface.

ACS Cent Sci

Department of Materials Science and Engineering, Department of Chemistry, Department of Chemical and Biological Engineering, and Department of Physics, Northwestern University, Evanston, Illinois 60208, United States.

Published: April 2019

Quantitatively understanding the self-assembly of amphiphilic macromolecules at liquid-liquid interfaces is a fundamental scientific concern due to its relevance to a broad range of applications including bottom-up nanopatterning, protein encapsulation, oil recovery, drug delivery, and other technologies. Elucidating the mechanisms that drive assembly of amphiphilic macromolecules at liquid-liquid interfaces is challenging due to the combination of hydrophobic, hydrophilic, and Coulomb interactions, which require consideration of the dielectric mismatch, solvation effects, ionic correlations, and entropic factors. Here we investigate the self-assembly of a model block copolymer with various charge fractions at the chloroform-water interface. We analyze the adsorption and conformation of poly(styrene)--poly(2-vinylpyridine) (PS--P2VP) and of the homopolymer poly(2-vinylpyridine) (P2VP) with varying charge fraction, which is controlled via a quaternization reaction and distributed randomly along the backbone. Interfacial tension measurements show that the polymer adsorption increases only marginally at low charge fractions (<5%) but increases more significantly at higher charge fractions for the copolymer, while the corresponding randomly charged P2VP homopolymer analogues display much more sensitivity to the presence of charged groups. Molecular dynamics (MD) simulations of the experimental systems reveal that the diblock copolymer (PS--P2VP) interfacial activity could be mediated by the formation of a rich set of complex interfacial copolymer aggregates. Circular domains to elongated stripes are observed in the simulations at the water-chloroform interface as the charge fraction increases. These structures are shown to resemble the spherical and cylindrical helicoid structures observed in bulk chloroform as the charge fraction increases. The self-assembly of charge-containing copolymers is found to be driven by the association of the charged component in the hydrophilic block, with the hydrophobic segments extending away from the hydrophilic cores into the chloroform phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487451PMC
http://dx.doi.org/10.1021/acscentsci.9b00084DOI Listing

Publication Analysis

Top Keywords

amphiphilic macromolecules
8
macromolecules liquid-liquid
8
liquid-liquid interfaces
8
charge fractions
8
self-assembly charge-containing
4
charge-containing copolymers
4
copolymers liquid-liquid
4
liquid-liquid interface
4
interface quantitatively
4
quantitatively understanding
4

Similar Publications

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

Programming Surface Motility and Modulating Physiological Behaviors of Bacteria via Biosurfactant-Mimetic Polyurethanes.

ACS Appl Mater Interfaces

December 2024

School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States.

Modulating microbial motility and physiology can enhance the production of bacterial macromolecules and small molecules. Herein, a platform of water-soluble and amphiphilic peptidomimetic polyurethanes is reported as a means of regulating bacterial surface behavior and the concomitant production of extracellular polymeric substances (EPS). It is demonstrated that carboxyl (-COOH)-containing polyurethanes exhibited 17-fold and 80-fold enhancements in () swarming and twitching areas, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Strong polyelectrolytes are flexible macromolecules that can disperse in water and interact with charged species in various applications, but their controlled synthesis and characterization pose challenges.
  • The study focuses on creating strong polyanions using poly(3-isobutoxysulphopropyl methacrylate) by deprotection with iodide salts, yielding polyanions with diverse properties based on counterion size.
  • The resulting amphiphilic macromolecules can form micelles in water, maintaining consistent hydrophilic and hydrophobic segments while allowing for varied polyanionic characteristics.
View Article and Find Full Text PDF

Micellar "Click" Nanoreactors: Spiking Pluronic-Based Micelles with Polymeric Ligands.

Macromolecules

November 2024

Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel- Aviv 6997801, Israel.

In recent years, the development of nanoreactors, such as micellar nanoreactors (MNRs) for catalytic transformations, has gained significant attention due to their potential in enhancing reaction rates, selectivity, efficiency, and, as importantly, the ability to conduct organic chemistry in aqueous solutions. Among these, the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction represents a pivotal transformation and is widely used in the synthesis of bioconjugates, pharmaceuticals, and advanced materials. This study aims toward advancing our understanding of the design and utilization of polymeric amphiphiles containing tris-triazole ligands as an integral element for CuAAC reactions within MNRs.

View Article and Find Full Text PDF

His-tag based supramolecular biopolymerization.

Sci Rep

November 2024

Department of Chemical Sciences, Ariel University, 70400, Ariel, Israel.

The term supramolecular polymer has been applied to polymeric materials in which the individual units, i.e., building blocks-are bound to each other via noncovalent interactions, including electrostatic or hydrogen bonding, as well as metal-ligand conjugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!