Background: Sickle cell trait (HbAS) confers partial protection against malaria by reducing the adhesion of -infected erythrocytes to host receptors, but little is known about its potential protection against placental malaria.
Methods: Using flow cytometry, we assessed the recognition of HbAA and HbAS VAR2CSA-expressing infected erythrocytes, by plasma from 159 Beninese pregnant women with either HbAA (normal) or HbAS. Using multivariate linear models adjusted for gravidity, parasite infection at delivery, glucose-6-phosphate dehydrogenase deficiency, and α-thalassemia carriage, we observed significantly reduced cell surface antibody binding of HbAS-infected erythrocytes by plasma from HbAS compared with HbAA women ( < 10).
Results: The difference in cell surface antibody binding was only observed when infected erythrocytes and plasma were associated according to the same hemoglobin genotype. Similar levels of VAR2CSA-specific antibody were measured by enzyme-linked immunosorbent assay in the 2 groups, suggesting that the altered interaction between VAR2CSA and HbAS women's antibodies could reflect abnormal display of VAR2CSA on HbAS erythrocytes.
Conclusions: Our data stress the need for assessments of erythrocyte disorders such as the sickle cell trait in a population group when studying immunological responses to .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483131 | PMC |
http://dx.doi.org/10.1093/ofid/ofz156 | DOI Listing |
J Transl Med
January 2025
School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy.
Background: Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!