Krüppel-Like Factor 4 (KLF4) is a member of the KLF transcription factor family, and evidence suggests that KLF4 is either an oncogene or a tumor suppressor. The regulatory mechanism underlying KLF4 expression in cancer, and specifically in lymphoma, is still not understood. Bioinformatics analysis revealed two YY1 putative binding sites in the KLF4 promoter region (-950 bp and -105 bp). Here, the potential regulation of KLF4 by YY1 in NHL was analyzed. Mutation of the putative YY1 binding sites in a previously reported system containing the KLF4 promoter region and CHIP analysis confirmed that these binding sites are important for KLF4 regulation. B-NHL cell lines showed that both KLF4 and YY1 are co-expressed, and transfection with siRNA-YY1 resulted in significant inhibition of KLF4. The clinical implications of YY1 in the transcriptional regulation of KLF4 were investigated by IHC in a TMA with 43 samples of subtypes DLBCL and FL, and all tumor tissues expressing YY1 demonstrated a correlation with KLF4 expression, which was consistent with bioinformatics analyses in several databases. Our findings demonstrated that KLF4 can be transcriptionally regulated by YY1 in B-NHL, and a correlation between YY1 expression and KLF4 was found in clinical samples. Hence, both YY1 and KLF4 may be possible therapeutic biomarkers of NHL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481341 | PMC |
http://dx.doi.org/10.18632/oncotarget.26745 | DOI Listing |
Anticancer Res
January 2025
Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Background/aim: Ovarian cancer (OC) is one of the leading gynecological causes of death among women. The current standard treatment for OC is debulking surgery followed by platinum-based chemotherapy treatments; however, despite initial success to treatment many patients experience relapses. Currently, there are no available tests to predict sensitivity or resistance to chemotherapy.
View Article and Find Full Text PDFDev Cell
December 2024
Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:
Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Anqing Medical College Clinical Research Center, Anqing Municipal Hospital, Anqing, Anhui, P.R. China.
Our previous research identified that lncRNA PVT1 is upregulated in patients with IA. However, the precise functions of PVT1 in IA remain unclear. We compared the levels of PVT1, caspase-3, caspase-1, and NLRP3 in normal and IA patients.
View Article and Find Full Text PDFWorld J Methodol
December 2024
Department of Biology, St. Francis College, Brooklyn, NY 11201, United States.
In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!