The T3 molecule on the surface membrane of T lymphocytes is involved in the transduction of the proliferation signal generated by an interaction between the antigen receptor and an antigen, to the interior of the T cell. Mitogenic monoclonal antibodies against the T3 molecule and mitogenic lectins induce a rapid (within 5 min) protein synthesis-independent activation of ornithine decarboxylase (ODC) in human T lymphocytes. When T cells are selectively depleted of guanine nucleotides by treatment with mycophenolic acid, the early mitogen-induced activation of ODC is completely inhibited. The inhibition rapidly reverted on the addition of guanine a few minutes before the mitogenic stimulation, and even more rapidly by GTP directly introduced into the T cells by a transient membrane permeabilization. GTP can be substituted for by a non-hydrolyzable GTP analogue, GTP-gamma-S, which also induces ODC activity by itself in human T cells. These results suggest that a G-protein(s) is involved in the transduction of the proliferation signal in human T cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-5793(87)81491-6 | DOI Listing |
Cell Mol Life Sci
January 2025
Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy.
Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Gynecology, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
Backgrounds: Collagen type I alpha 1 chain (COL1A1) is a key protein encoding fibrillar collagen, playing a crucial role in the tumor microenvironment (TME) due to its complex functions and close association with tumor invasiveness. This has made COL1A1 a focal point in cancer biology research. However, studies investigating the relationship between COL1A1 expression levels and clinical characteristics of ovarian cancer (OC) remain limited.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
January 2025
School of Health Santa Casa BH, Belo Horizonte, MG, Brazil.
Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!