Thoracic paravertebral sympathetic postganglionic neurons (tSPNs) comprise the final integrative output of the distributed sympathetic nervous system controlling vascular and thermoregulatory systems. Considered a non-integrating relay, what little is known of tSPN intrinsic excitability has been determined by sharp microelectrodes with presumed impalement injury. We thus undertook the first electrophysiological characterization of tSPN cellular properties using whole-cell recordings and coupled results with a conductance-based model to explore the principles governing their excitability in adult mice of both sexes. Recorded membrane resistance and time constant values were an order of magnitude greater than values previously obtained, leading to a demonstrable capacity for synaptic integration in driving recruitment. Variation in membrane resistivity was the primary determinant controlling cell excitability with vastly lower currents required for tSPN recruitment. Unlike previous microelectrode recordings in mouse which observed inability to sustain firing, all tSPNs were capable of repetitive firing. Computational modeling demonstrated that observed differences are explained by introduction of a microelectrode impalement injury conductance. Overall, tSPNs largely linearly encoded injected current magnitudes over a broad frequency range with distinct subpopulations differentiable based on repetitive firing signatures. Thus, whole-cell recordings reveal tSPNs have more dramatically amplified excitability than previously thought, with greater intrinsic capacity for synaptic integration and with the ability for maintained firing to support sustained actions on vasomotor tone and thermoregulatory function. Rather than acting as a relay, these studies support a more responsive role and possible intrinsic capacity for tSPNs to drive sympathetic autonomic function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514441 | PMC |
http://dx.doi.org/10.1523/ENEURO.0433-18.2019 | DOI Listing |
Liver Int
January 2025
Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.
The discovery of PNPLA3 as a genetic risk factor for liver disease has transformed our understanding of the pathogenesis of alcohol-related liver disease (ALD). The recent reclassification of fatty liver disease as steatotic liver disease (SLD), introducing metabolic dysfunction and alcohol-related liver disease (MetALD), has highlighted how genetic and environmental factors synergistically drive liver damage. The PNPLA3 rs738409 variant stands as a paradigmatic example of gene-environment interaction, where its effect on liver disease is dramatically amplified by alcohol consumption, obesity and type 2 diabetes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye.
In the existing development of extensive drug screening models, 3D cell cultures outshine conventional 2D monolayer cells by closely imitating the in vivo tumor microenvironment. This makes 3D culture a more physiologically relevant and convenient system in the regime of preclinical drug testing. In the nanomedicinal world, nanoconjugates as nanocarriers are largely hunted due to their capability of precisely binding to target cells and distributing essential dosages of therapeutic drugs with enhanced safety profiles.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
University of Basel, Department of Physics, Klingelbergstrasse 82, 4056 Basel, Switzerland.
Nat Hum Behav
December 2024
Department of Sociology, University of Chicago, Chicago, IL, USA.
Market bubbles emerge when asset prices are driven unsustainably higher than asset values, and shifts in belief burst them. We demonstrate an analogous phenomenon in the case of biomedical knowledge, when promising research receives inflated attention. We introduce a diffusion index that quantifies whether research areas have been amplified within social and scientific bubbles, or have diffused and become evaluated more broadly.
View Article and Find Full Text PDFMater Horiz
December 2024
Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
Three-dimensional (3D) sensors selectively measure the applied force in a particular direction through the designed shape. However, such a fixed sensor design incurs a relatively low sensitivity and narrow measurement range to forces applied from other directions. Here, we report a shape-reconfigurable electronic composite based on a stiffness-tunable polymer and a crack-based strain sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!