AI Article Synopsis

  • Homozygous deletion of the MTAP gene is common in glioblastoma (GBM) and leads to significant epigenetic changes, including hypomethylation of pathways linked to cancer stem cells.
  • Loss of MTAP increases the formation of glioma stem-like cells (GSCs) that express higher levels of CD133 and are associated with a worse prognosis for GBM patients.
  • Targeting purine synthesis may effectively reduce the prevalence of these CD133-positive cells in MTAP-deficient GBM, providing a potential therapeutic approach.

Article Abstract

Homozygous deletion of methylthioadenosine phosphorylase () is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of /CD133-associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of /CD133 and enhanced tumorigenicity of GBM cells and is associated with poor prognosis in patients with GBM. As a combined consequence of purine production deficiency in -null GBM and the critical dependence of GSCs on purines, the enriched subset of CD133 cells in -null GBM can be effectively depleted by inhibition of purine synthesis. These findings suggest that MTAP loss promotes the pathogenesis of GBM by shaping the epigenetic landscape and stemness of GBM cells while simultaneously providing a unique opportunity for GBM therapeutics. SIGNIFICANCE: This study links the frequently mutated metabolic enzyme MTAP to dysregulated epigenetics and cancer cell stemness and establishes MTAP status as a factor for consideration in characterizing GBM and developing therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6810595PMC
http://dx.doi.org/10.1158/0008-5472.CAN-18-1010DOI Listing

Publication Analysis

Top Keywords

gbm
9
mtap loss
8
loss promotes
8
gbm cells
8
-null gbm
8
mtap
6
promotes stemness
4
stemness glioblastoma
4
glioblastoma confers
4
confers unique
4

Similar Publications

Integrating machine learning with mendelian randomization for unveiling causal gene networks in glioblastoma multiforme.

Discov Oncol

January 2025

Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.

Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.

Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.

View Article and Find Full Text PDF

Citronellol (CT) is a naturally occurring lipophilic monoterpenoid which has shown anticancer effects in numerous cancerous cell lines. This study was, therefore, designed to examine CT's potential as an anticancer agent against glioblastoma (GBM). Network pharmacology analysis was employed to identify potential anticancer targets of CT.

View Article and Find Full Text PDF

Development and Validation of a Prognostic Molecular Phenotype and Clinical Characterization in Grade III Diffuse Gliomas Treatment with Radio-Chemotherapy.

Ther Clin Risk Manag

January 2025

Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.

Background: The relationship between molecular phenotype and prognosis in high-grade gliomas (WHO III and IV, HGG) treated with radiotherapy and chemotherapy is not fully understood and needs further exploration.

Methods: The HGG patients following surgery and treatment with radiotherapy and chemotherapy. Univariate and multivariate Cox analyses were used to assess the independent prognostic factors.

View Article and Find Full Text PDF

Purpose: Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!