Background: Hemoglobinopathies and thalassemias are the most common genetically determined disorders. Current screening methods include cation-exchange HPLC and electrophoresis, the results of which can be ambiguous because of limited resolving power. Subsequently, laborious genetic testing is required for confirmation.

Methods: We performed a top-down tandem mass spectrometry (MS/MS) approach with a fast data acquisition (3 min), ultrahigh mass accuracy, and extensive residue cleavage by use of positive electrospray ionization 21 Tesla Fourier transform ion cyclotron resonance-tandem mass spectrometry (21 T FT-ICR MS/MS) for hemoglobin (Hb) variant de novo sequencing and β-thalassemia diagnosis.

Results: We correctly identified all Hb variants in blind analysis of 18 samples, including the first characterization of homozygous Hb Himeji variant. In addition, an Hb heterozygous variant with isotopologue mass spacing as small as 0.0194 Da (Hb AD) was resolved in both precursor ion mass spectrum (MS1) and product ion mass spectrum (MS2). In blind analysis, we also observed that the abundance ratio between intact δ and β subunits (δ/β) or the abundance ratio between intact δ and α subunits (δ/α) could serve to diagnose β-thalassemia trait caused by a mutation in 1 gene.

Conclusions: We found that 21 T FT-ICR MS/MS provides a benchmark for top-down MS/MS analysis of blood Hb. The present method has the potential to be translated to lower resolving power mass spectrometers (lower field FT-ICR mass spectrometry and Orbitrap) for Hb variant analysis (by MS1 and MS2) and β-thalassemia diagnosis (MS1).

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2018.295766DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
20
mass
10
tesla fourier
8
fourier transform
8
transform ion
8
ion cyclotron
8
tandem mass
8
resolving power
8
ft-icr ms/ms
8
blind analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!