LAMA2 mutations cause the most frequent congenital muscular dystrophy subtype MDC1A and a variety of milder phenotypes, characterized by total or partial laminin-α2 deficiency. In both severe and milder cases brain MRI invariably shows abnormal white matter signal intensity. We report clinical, histopathological, imaging and genetic data on two siblings with very subtle, and at first undetected, reduction in laminin-α2 expression, and brain MRI showing minor non-specific abnormalities. Clinical features in the female proband were characterized by muscle weakness involving neck and axial muscles, and pelvic girdle and distal lower limb muscles, reduced tendon reflexes and pes cavus. Clinical features in a younger brother were similar, and remained stable in both siblings during the follow up. Whole exome sequencing (WES) detected two heterozygous truncating LAMA2 mutations. Brain MRI in combination with laminin-α2 immunohistochemistry might not be sufficient and WES might be the only means to reach a diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nmd.2019.04.001 | DOI Listing |
J Neurooncol
January 2025
Department of Neurosurgery, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.
Background And Objectives: Recently, reduction of transcallosal inhibition by contralateral navigated repetitive transcranial magnetic stimulation (nrTMS) improved neurorehabilitation of glioma patients with new postoperative paresis. This multicentric study examines the effect of postoperative nrTMS in brain tumor patients to treat surgery-related upper extremity paresis.
Methods: This is a secondary analysis of two randomized and three one-arm studies in brain tumor patients with new/progressive postoperative paresis.
Audiol Res
December 2024
ENT & Audiology Unit, Department of Neurosciences, University Hospital of Ferrara, 44124 Ferrara, Italy.
Objectives: The present study aims to identify potential predictive factors for developing sensorineural hearing loss (SNHL) in individuals with congenital Cytomegalovirus (cCMV) infection.
Methods: A retrospective study was performed on 50 subjects with cCMV infection (symptomatic and asymptomatic), followed at the Audiology Service of Sant'Anna Hospital (University Hospital of Ferrara). The following data were analyzed: the type of maternal Cytomegalovirus (CMV) infection (primary versus non-primary), time of in utero infection, systemic signs and symptoms or laboratory test anomalies due to cCMV infection, and signs and symptoms of central nervous system (CNS) involvement at birth.
Hum Brain Mapp
February 2025
Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI.
View Article and Find Full Text PDFMagn Reson Med
January 2025
F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
Purpose: We hypothesized that radiation-induced tubulointerstitial changes in the kidney can be assessed using MRI-based T relaxation time measurements.
Methods: We performed MRI, histology, and serum biochemistry in two mouse models of radiation nephropathy: one involving external beam radiotherapy and the other using internal irradiation with an α-particle-emitting actinium-225 radiolabeled antibody. We compared the mean T values of different renal compartments between control and external beam radiotherapy or α-particle-emitting actinium-225 radiolabeled antibody-treated groups and between the two radiation-treated groups using a Wilcoxon rank-sum test.
J Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!