By electron beam evaporation, noble metals (Au, Co, Pt, and Ag) with 2 and 4 nm nominal thicknesses were coated onto multi-walled carbon nanotube layers. The metals were in the form of nanoparticles mounted onto the side walls of carbon nanotubes (CNTs) to create a metal/CNT junction. The CNTs were directly grown on patterned Pt-electrode alumina substrates through chemical vapor deposition to produce a resistivity-based ammonia gas sensor. The metallic surface-modified CNT-based sensors were found sensitive to NH₃ gas at room temperature. Compared with pristine CNT sensor, the response of Au/CNTs sensor increased slightly, whereas the responses of the Pt/CNTs, Co/CNTs, and Ag/CNTs increased by two, three, and more than four times, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16725 | DOI Listing |
Se Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong.
Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.
This paper is a comprehensive reference for researchers interested in flexible AC alternating current transmission systems (FACTS) technologies. This study investigates modified UPFC models. Besides UPFC, an overview of DPFC will be presented, and the critical differences between these advanced power flow control technologies will be discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!