MoS₂ microrods constructed by ultrathin nanosheets have been synthesized, for the first time, by thermal decomposition of intermediate (NH₄)₂MoS₄ crystals, which could not only provide the single-source for both the molybdenum and sulfur atoms, but also served as the self-sacrificed template. The well-defined microstructure was characterized by XRD, SEM, TEM, XPS, BET, respectively. The results indicated that MoS₂ microrods with uniform morphology were assembled by defective ultrathin nanosheets. Moreover, these MoS₂ microrods exhibit superior catalytic activity with the apparent rate constant () of 0.161 min for the reduction of 4-nitrophenol (4-NP) by NaBH4. Encouragingly, the MoS₂ microrods still show evident activity for the reduction of 4-NP after five cycle tests, which has significant importance for the application in the reduction of 4-NP to p-aminophenol (4-AP). Also, this method can be extended to construct other kinds of metal dichalcogenides (TMDs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16664 | DOI Listing |
J Colloid Interface Sci
January 2025
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 PR China. Electronic address:
The development of efficient photocatalysts inspired by natural photosynthesis has drawn considerable interest for sustainable hydrogen (H) production. Among the various strategies for enhancing H evolution, constructing step-scheme (S-scheme) heterojunctions has attracted extensive interest, thanks to their limited charge recombination and enhanced charge transport in comparison to the traditional photocatalytic systems. Herein, we report the engineering of a novel S-scheme heterojunction by integrating ultrathin ZnInS (ZIS) nanosheets with MOF-derived N-doped NiO porous microrods (ZIS/N-NiO) toward superior photocatalytic behaviors.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China.
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire De Physique de l'École Normale Supérieure, ENS, PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France.
The hollow fiber membrane bundle is the functional component of artificial lungs, transferring oxygen to and carbon dioxide from the blood. It is also the primary location of blood clot formation and propagation in these devices. The geometric design of fiber bundles is defined by a narrow set of parameters that determine gas exchange efficiency and blood flow resistance, principally: fiber packing density, path length, and frontal area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), Valencia 46071, Spain.
Two-dimensional halide perovskites are promising for advanced photonic, optoelectronic, and photovoltaic applications. However, their long-term stability is still a critical factor limiting their implementation into further commercial applications. Here, we present an environmental stability analysis of BA(MA)PbI (BA = CHN, MA = CHN) two-dimensional perovskites with the lowest quantum well thicknesses of = 1 and = 2, after 1 year of aging under ambient humidity, oxygen content, and light conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!