Small sized electrocatalysts, which can be obtained by rapid nucleation and high supersaturation are imperative for outstanding methanol oxidation reaction (MOR). Conventional microwave synthesis processes of electrocatalysts include ultrasonication, stirring, pH adjustment, and microwave irradiation of the precursor mixture. Ethylene glycol (EG), which serves as a reductant and solvent was added during the ultrasonication or stirring stage. However, this step and pH adjustment resulted in unintended multi-stage gradual nucleation. In this study, the microwave reduction approach was used to induce rapid nucleation and high supersaturation in order to fabricate small-sized reduced graphene oxide-supported palladium (Pd/rGO) electrocatalysts via the delayed addition of EG, elimination of the pH adjustment step, addition of sodium carbonate (Na₂CO₃), prior microwave irradiation of the EG mixed with Na₂CO₃, and addition of room temperature precursor mixture. Besides its role as a second reducing agent, the addition of Na₂CO₃ was primarily intended to generate an alkaline condition, which is essential for the high-performance of electrocatalysts. Moreover, the microwave irradiation of the EG and Na₂CO₃ mixture generated highly reactive free radicals that facilitate rapid nucleation. Meanwhile, the room temperature precursor mixture increased supersaturation. Results showed improved electrochemically active surface area (78.97 m² g, 23.79% larger), MOR (434.49 mA mg, 37.96% higher) and stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.16717 | DOI Listing |
Materials (Basel)
January 2025
School of Energy and Automotive Engineering, Shunde Polytechnic, Foshan 528300, China.
A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.
View Article and Find Full Text PDFNature
January 2025
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
Frictional motion is mediated by rapidly propagating ruptures that detach the ensemble of contacts forming the frictional interface between contacting bodies. These ruptures are similar to shear cracks. When this process takes place in natural faults, these rapid ruptures are essentially earthquakes.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
Inserting metal ions into the porphyrin ring is one of the primary strategies to enhance the properties of porphyrin-based metal-organic frameworks (MOFs). However, the straightforward, rapid, and energy-efficient synthesis of porphyrin-based MOFs with high metallization for the porphyrin ring remains challenging. Herein, a solution anode glow discharge (SAGD) microplasma is presented for the one-step synthesis of scandium-metalloporphyrin frameworks (ScMPFs).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!