Purpose: To explore whether the Rho protein is involved in the radioresistance of colorectal cancer and investigate the underlying mechanisms.
Methods And Materials: Rho GTPase expression was measured after radiation treatment in colon cancer cells. RhoB knockout cell lines were established using the CRISPR/Cas9 system. In vitro assays and zebrafish embryos were used for analyzing radiosensitivity and invasive ability. Mass cytometry was used to detect RhoB downstream signaling factors. RhoB and Forkhead box M1 (FOXM1) expression were detected by immunohistochemistry in rectal cancer patients who participated in a radiation therapy trial.
Results: RhoB expression was related to radiation resistance. Complete depletion of the RhoB protein increased radiosensitivity and impaired radiation-enhanced metastatic potential in vitro and in zebrafish models. Probing signaling using mass cytometry-based single-cell analysis showed that the Akt phosphorylation level was inhibited by RhoB depletion after radiation. FOXM1 was downregulated in RhoB knockout cells, and the inhibition of FOXM1 led to lower survival rates and attenuated migration and invasion abilities of the cells after radiation. In the patients who underwent radiation therapy, RhoB overexpression was related to high FOXM1, late Tumor, Node, Metastasis stage, high distant recurrence, and poor survival independent of other clinical factors.
Conclusions: RhoB plays a critical role in radioresistance of colorectal cancer through Akt and FOXM1 pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2019.04.021 | DOI Listing |
Diseases
January 2025
Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
Radiation therapy or radiotherapy is a medical treatment that uses high doses of ionizing radiation to eliminate cancer cells and shrink tumors. It works by targeting the DNA within the tumor cells restricting their proliferation. Radiotherapy has been used for treating cancer for more than 100 years.
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Radioresistance is a major challenge in the treatment of patients with colorectal cancer (CRC) and impairs the efficacy of radiotherapy. The PI3K/AKT/mTOR signaling pathway plays a critical role in CRC and contributes to the development of radioresistance. Accordingly, targeting this signaling pathway may be a promising strategy to improve oncotherapy.
View Article and Find Full Text PDFColorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea.
Background: Combining radiotherapy (RT) with immune checkpoint inhibitors (ICIs) is a promising strategy that can enhance the therapeutic efficacy of ICIs. However, little is known about RT-induced changes in the expression of immune checkpoints, such as PD-L1, and their clinical implications in colorectal cancer (CRC). This study aimed to investigate the association between responsiveness to RT and changes in PD-L1 expression in human CRC tissue and cell lines.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
Hafnium (Hf)-based nanoscale metal-organic layers (MOLs) enhance radiotherapeutic effects of tissue-penetrating X-rays via a unique radiotherapy-radiodynamic therapy (RT-RDT) process through efficient generation of hydroxy radical (RT) and singlet oxygen (RDT). However, their radiotherapeutic efficacy is limited by hypoxia in deep-seated tumors and short half-lives of reactive oxygen species (ROS). Herein the conjugation of a nitric oxide (NO) donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), to the Hf secondary building units (SBUs) of Hf-5,5'-di-p-benzoatoporphyrin MOL is reported to afford SNAP/MOL for enhanced cancer radiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!