In this work, we have developed a model to describe the behavior of liquid drops upon impaction on hydrophobic particle bed and verified it experimentally. Poly(tetrafluoroethylene) (PTFE) particles were used to coat drops of water, aqueous solutions of glycerol (20, 40, and 60% v/v), and ethanol (5 and 12% v/v). The experiments were conducted for Weber number ( We) ranging from 8 to 130 and Reynolds number ( Re) ranging from 370 to 4460. The bed porosity was varied from 0.8 to 0.6. The experimental values of β (ratio of the diameter at the maximum spreading condition to the initial drop diameter) were estimated from the time-lapsed images captured using a high-speed camera. The theoretical β was estimated by making energy balances on the liquid drop. The proposed model accounts for the energy losses due to viscous dissipation and crater formation along with a change in kinetic energy and surface energy. A good agreement was obtained between the experimental β and the estimated theoretical β. The proposed model yielded a least % absolute average relative deviation (% AARD) of 5.5 ± 4.3 compared to other models available in the literature. Further, it was found that the liquid drops impacting on particle bed are completely coated with PTFE particles with β values greater than 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b00698 | DOI Listing |
J Equine Vet Sci
January 2025
Veterinary Reproduction Group, Faculty of Veterinary Medicine, University of Cordoba, Spain. Electronic address:
Sperm vitrification is an alternative freezing method, which includes high cooling rates and non-permeable cryoprotectants agents. The first attempt in equids was using the spheres technique by directly dropping small volumes of the sperm into liquid nitrogen. Later, vitrification was developed using 0.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFChemosphere
January 2025
Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland. Electronic address:
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Government College Women University, Sialkot, Pakistan.
The phytochemical fingerprinting that add to the nutritional and nutraceutical value of the fruits during the ripening stages is beneficial for human consumption. Therefore, ripening-dependent changes in phytochemical content and antioxidant activities of mango (Mangifera indica L.) cultivar Dusehri at various ripening stages were evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, Center of Excellence in Energy Conversion, Sharif University of Technology, Tehran, Iran.
Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!