Orthodontic bonding systems are submitted to demineralization and remineralization dynamics that might compromise their surface smoothness, and favor biofilm aggregation and caries development. The aim of the present study was to evaluate the effects of a cariogenic challenge model (in vitro pH-cycling model) on the surface roughness and topography of 3 bonding materials: Transbond™ XT (XT), Transbond™ Plus Color Change (PLUS) and Fuji Ortho™ LC (FUJI), by means of Atomic Force Microscopy (AFM). Six specimens with standardized dimensions and surface smoothness were fabricated per group, and the materials were manipulated in accordance with the manufacturers' instructions. No polishing was necessary. AFM tests were performed before and after pH-cycling, taking 3 readouts per specimen. The roughness results (Ra) were obtained at nanometric levels (nm) and surface records were acquired in two- and three-dimensional images of height and lock-in phase of the material components. The surfaces of all groups analyzed in the study were morphologically altered, presenting images suggestive of matrix degradation and loss of matrix-load integrity. FUJI presented the greatest increase in surface roughness, followed by XT and PLUS, respectively (p≤0.001). Nevertheless, the roughness values found did not present sufficient degradation to harbor bacteria. The surface roughness of all tested materials was increased by pH-cycling. The use of materials capable of resisting degradation in the oral environment is recommended, in order to conserve their integrity and of the surrounding tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/1807-3107bor-2019.vol33.0029 | DOI Listing |
Mater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, 122505, India.
Accumulation of plastic waste is an alarming environmental concern across globe. For which, microbial degradation offers an efficient ecofriendly solution. Thus, the present study focuses on the exploration of new bacterium that can grow on and utilize polyethylene.
View Article and Find Full Text PDFFood Technol Biotechnol
December 2024
Research Center for Appropriate Technology-National Research and Innovation Agency Jl. K.S. Tubun No. 5 Subang 41213, West Java, Indonesia.
Research Background: Porang ( Blume) contains a high amount of starch, glucomannan and Ca-oxalate. Soaking porang tuber in acid (citric acid) and salt (sodium chloride) solutions affects the Ca-oxalate content, functional, rheological and thermal properties of porang flour. The aim of this study is to thoroughly investigate the effect of soaking treatments in acid and salt solutions at different temperatures on the physicochemical, rheological and thermal properties, functional groups, molecular mass and morphology of porang flour.
View Article and Find Full Text PDFACS Photonics
January 2025
Photonic Nanomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
Colloidal semiconductor nanocrystals (NCs) are an efficient and cost-effective class of nanomaterials for optoelectronic applications. Advancements in NC-based optoelectronic devices have resulted from progress in synthetic chemistry, adjustable surface properties, and optimized device architectures. Semiconductor nanoplatelets (NPLs) stand out among other NCs due to their precise growth control, yielding uniform thickness with submonolayer roughness.
View Article and Find Full Text PDFBiophys Rev
December 2024
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK.
Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!