The ternary complexation of calcium uranyl tricarbonate species, CaUO(CO) and CaUO(CO)(aq), which are the predominant U(vi) complexes in groundwater and seawater, was investigated at variable temperatures from 10 to 70 °C. Time-resolved laser fluorescence spectroscopy (TRLFS), calcium ion-selective electrode potentiometry, and ultraviolet/visible (UV/Vis) absorption spectroscopy were complementarily employed to determine the formation constants (log K, x = 1 and 2 for mono- and dicalcium complexes, respectively). at infinite dilution (zero ionic strength) was determined by correction using specific ion interaction theory (SIT), and an increasing tendency of with temperature was observed. In addition, the molar enthalpy of complexation (ΔH) was measured by calorimetry at 25 °C. Based on thermodynamic data obtained in this work, the approximation models were examined for the prediction of the temperature effect on the complexation, and the constant enthalpy approximation with the chemical complexation reaction modified to an isoelectric reaction showed a satisfactory prediction of in the temperature range of 10-70 °C. Finally, the results of U(vi) speciation in groundwater indicated that the dominance of calcium uranyl tricarbonate complexes would be weakened at elevated temperatures by the strongly enhanced hydrolysis of U(vi).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt01174a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!