Maleic hydrazide has been extensively used as an effective growth regulator in tobacco sucker control. After application, maleic hydrazide distributes itself throughout the tobacco plant where it can exist as free, or forms glucoside conjugates with glucose, or becomes bound with lignin. Among them, free maleic hydrazide and its glucoside conjugates are extractable under conventional solvent extraction, while lignin bound maleic hydrazide is claimed to be non-extractable. Herein, an autoclave extraction method has been developed to extract maleic hydrazide effectively, in which tobacco samples are extracted in an autoclave at 130°C for 1 h using 4 M hydrochloric acid. Under such pressurized hot acidic water conditions, lignin bound maleic hydrazide can be released. Meanwhile, glucoside conjugates are hydrolyzed. Total maleic hydrazide is detected by liquid chromatography coupled with tandem mass spectrometry, and the quantitative results coincide well with that obtained from the international standard method. The proposed autoclave extraction with liquid chromatography and tandem mass spectrometry method exhibits excellent linearity in the range of 5-200 mg/kg (R = 0.9998), the matrix matched limit of detection and limit of quantification is 0.68 and 2.27 mg/kg, respectively. This method is simple and improves sample capacity, providing an effective approach to monitoring maleic hydrazide residues in tobacco.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201900250 | DOI Listing |
Plant Physiol Biochem
December 2024
Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Yazhouwan National Laboratory, Sanya, 572024, China. Electronic address:
Pre-harvest sprouting (PHS) in cereal crops is a prevalent phenomenon that impacts grain yield and quality. Several PHS inhibitory compounds were screened and identified in previous studies, such as eugenol (EUG), maleic hydrazide (MH), coumarin (COU), etc. However, few studies have focused on the combination of PHS inhibitors, and the inhibitory mechanism remains unclear.
View Article and Find Full Text PDFOrg Biomol Chem
October 2024
University College Dublin, School of Chemistry, Science Centre South, D04 N2E5 Dublin, Ireland.
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China. Electronic address:
Maleic hydrazide (MH) is a commonly used plant growth regulator and herbicide. However, due to its potential mutagenicity, carcinogenicity, genotoxicity, and cytotoxicity, sensitive and rapid detection of MH residues in foods is crucial. Herein, a sensitive and reliable surface-enhanced Raman scattering (SERS) sensor for MH based on a self-constructed hydrogel SERS platform is proposed for the first time.
View Article and Find Full Text PDFEnviron Pollut
October 2024
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy. Electronic address:
Plant protection products (PPPs) play a fundamental role in the maintenance of agricultural fields and private/public green areas, however they can contaminate zones nearby the application point due to wind drift, resuspension, and evaporation. Several studied have deepened the relationship between PPPs and living beings' health, suggesting that these products might have a negative influence. Some PPPs belong to the class of Emergent Contaminants, which are compounds whose knowledge on the environmental distribution and influence is limited.
View Article and Find Full Text PDFFood Chem
November 2024
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China. Electronic address:
The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!