Brain myelin and iron content are important parameters in neurodegenerative diseases such as multiple sclerosis (MS). Both myelin and iron content influence the brain's R relaxation rate. However, their quantification based on R maps requires a realistic tissue model that can be fitted to the measured data. In structures with low myelin content, such as deep gray matter, R shows a linear increase with increasing iron content. In white matter, R is not only affected by iron and myelin but also by the orientation of the myelinated axons with respect to the external magnetic field. Here, we propose a numerical model which incorporates iron and myelin, as well as fibre orientation, to simulate R decay in white matter. Applying our model to fibre orientation-dependent in vivo R data, we are able to determine a unique solution of myelin and iron content in global white matter. We determine an averaged myelin volume fraction of 16.02 ± 2.07% in non-lesional white matter of patients with MS, 17.32 ± 2.20% in matched healthy controls, and 18.19 ± 2.98% in healthy siblings of patients with MS. Averaged iron content was 35.6 ± 8.9 mg/kg tissue in patients, 43.1 ± 8.3 mg/kg in controls, and 47.8 ± 8.2 mg/kg in siblings. All differences in iron content between groups were significant, while the difference in myelin content between MS patients and the siblings of MS patients was significant. In conclusion, we demonstrate that a model that combines myelin-induced orientation-dependent and iron-induced orientation-independent components is able to fit in vivo R data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.4092DOI Listing

Publication Analysis

Top Keywords

iron content
24
white matter
20
iron myelin
12
myelin iron
12
myelin
9
myelin orientation
8
iron
8
content
8
myelin content
8
vivo data
8

Similar Publications

Purpose: This study aims to explore the neuroprotective effect of propofol in improving traumatic brain injury (TBI) by inhibiting ferroptosis through the modulation of the endothelial nitric oxide (NO) synthase (eNOS)/NO signaling pathway.

Methods: The GSE173975 dataset was used to analyze the differentially expressed genes between TBI and sham surgery control groups in the short and long term. A TBI model was established in 2-month-old male SPF C57BL/6 mice by impact exposure of the exposed dura mater.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic effect of Exocarpium Citri Grandis formula granules (ECGFG) on fatty liver disease (FLD) in zebrafish and explore the underlying mechanism.

Methods: Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD) models were established in zebrafish larvae at 3 days post fertilization (dpf), in which the treatment efficacy of 16, 32, or 64 μg/mL ECGFG was evaluated by examining zebrafish survival and liver pathologies and using whole-fish oil red O staining and RT-qPCR. The therapeutic mechanism of ECGFG for FLD was investigated using Prussian blue staining, DCFH-DA probe, MDA content detection, RT-qPCR assay and immunohistochemical staining for CAV1.

View Article and Find Full Text PDF

STRUCTURAL AND FUNCTIONAL BONE FEATURES IN CHILDREN RESIDING IN THE RADIOLOGICALLY CONTAMINATED TERRITORIES OF UKRAINE.

Probl Radiac Med Radiobiol

December 2024

State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.

Objective: Evaluation of structural features and metabolic/biochemical abnormalities of the bone tissue and relevant regulation patterns in children, residing in the radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 148) aged 7 to 18 years old were involved in the study. Bone mineral density (BMD) is given in 3 grades according to the mean square deviation values, namely Grade I - standard (n = 75),Grade II - reduced (n = 45) and Grade III - very low one (n = 28).

View Article and Find Full Text PDF

Objective: To determine the structure of abnormalities of bone tissue and substantiate the management tactics inacute lymphoblastic leukemia (ALL) pediatric patients and in children with no oncohematological disorders, livingin radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 220) living in RCT were the study participants i.e.

View Article and Find Full Text PDF

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!