AI Article Synopsis

Article Abstract

Key Points: Persistent inward currents (PICs) in spinal motoneurons are long-lasting, voltage-dependent currents that increase excitability; they are dramatically potentiated by serotonin, muscarine, and noradrenaline (norepinephrine). Loss of these modulators (and the PIC) during sleep is hypothesized as a major contributor to REM sleep atonia. Reduced excitability of XII motoneurons that drive airway muscles and maintain airway patency is causally implicated in obstructive sleep apnoea (OSA), but whether XII motoneurons possess a modulator-sensitive PIC that could be a factor in the reduced airway tone of sleep is unknown. Whole-cell recordings from rat XII motoneurons in brain slices indicate that PIC amplitude increases ∼50% between 1 and 23 days of age, when potentiation of the PIC by 5HT , muscarinic, or α noradrenergic agonists peaks at <50%, manyfold lower than the potentiation observed in spinal motoneurons. α noradrenergic receptor activation produced changes in XII motoneuron firing behaviour consistent with PIC involvement, but indicators of strong PIC activation were never observed; in vivo experiments are needed to determine the role of the modulator-sensitive PIC in sleep-dependent reductions in airway tone.

Abstract: Hypoglossal (XII) motoneurons play a key role in maintaining airway patency; reductions in their excitability during sleep through inhibition and disfacilitation, i.e. loss of excitatory modulation, is implicated in obstructive sleep apnoea. In spinal motoneurons, 5HT , muscarinic and α noradrenergic modulatory systems potentiate persistent inward currents (PICs) severalfold, dramatically increasing excitability. If the PICs in XII and spinal motoneurons are equally sensitive to modulation, loss of the PIC secondary to reduced modulatory tone during sleep could contribute to airway atonia. Modulatory systems also change developmentally. We therefore characterized developmental changes in magnitude of the XII motoneuron PIC and its sensitivity to modulation by comparing, in neonatal (P1-4) and juvenile (P14-23) rat brainstem slices, the PIC elicited by slow voltage ramps in the absence and presence of agonists for 5HT , muscarinic, and α noradrenergic receptors. XII motoneuron PIC amplitude increased developmentally (from -195 ± 12 to -304 ± 19 pA). In neonatal XII motoneurons, the PIC was only potentiated by α receptor activation (5 ± 4%). In contrast, all modulators potentiated the juvenile XII motoneurons PIC (5HT , 5 ± 5%; muscarine, 22 ± 11%; α , 18 ± 5%). These data suggest that the influence of the PIC and its modulation on XII motoneuron excitability will increase with postnatal development. Notably, the modulator-induced potentiation of the PIC in XII motoneurons was dramatically smaller than the 2- to 6-fold potentiation reported for spinal motoneurons. In vivo measurements are required to determine if the modulator-sensitive, XII motoneuron PIC is an important factor in sleep-state dependent reductions in airway tone.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP277572DOI Listing

Publication Analysis

Top Keywords

xii motoneurons
16
persistent currents
8
rat xii
8
serotonin muscarine
8
muscarine noradrenaline
8
motoneurons
5
postnatal development
4
development persistent
4
currents rat
4
xii
4

Similar Publications

The control of the respiratory rhythm and airway motor activity is essential for life. Accumulating evidence indicates that the postinspiratory complex (PiCo) is crucial for generating behaviors that occur during the postinspiratory phase, including expiratory laryngeal activity and swallowing. Located in the ventromedial medulla, PiCo is defined by neurons co-expressing two neurotransmitter markers (ChAT and Vglut2/Slc17a6).

View Article and Find Full Text PDF
Article Synopsis
  • Tongue weakness in motor neuron diseases like ALS can severely impact breathing and swallowing, leading to serious health risks such as respiratory failure and pneumonia.
  • Researchers used a rodent model to study the effects of a tongue exercise program on maintaining upper airway function and structure in these patients.
  • The study found that tongue exercises improved respiratory function and reduced structural airway changes, highlighting their potential role as a therapeutic approach for patients with motor neuron diseases.
View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS) tissue and the SOD1 mouse model at mid-disease, death of hypoglossal motor neurons (XII MNs) is evident. These XII MNs innervate the intrinsic and extrinsic tongue muscles, and despite their importance in many oral and lingual motor behaviours that are affected by ALS (e.g.

View Article and Find Full Text PDF

In neonatal rhythmic medullary slices, muscarinic acetylcholine receptor (mAChR) activation of hypoglossal (XII) motoneurons that innervate the tongue has a net excitatory effect on XII inspiratory motor output. Conversely, during rapid eye movement sleep in adult rodents, XII motoneurons experience a loss of excitability partly due to activation of mAChRs. This may be mediated by activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!