Composition control in biphasic silicate microspheres on stimulating new bone regeneration and repair of osteoporotic femoral bone defect.

J Biomed Mater Res B Appl Biomater

Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China.

Published: February 2020

Application of bioactive materials as synthetic bone graft substitutes in regenerative medicine has seen great evolution over the past decades in treating challengeable bone defects. However, balancing the preparation conditions and biological performances of inorganic biomaterials remain a great challenge, especially when there is lack of biomaterial design on how to control component distribution and how pathological bone responds to the biomaterial stimulations and osteogenesis. Here, our objective is to develop yolk-shell Ca-silicate microspheres and to investigate the potential biological performances to overcome the limitations in repair of osteoporotic bone defects. The introduction of β-calcium silicate (CaSiO ) or mesoporous bioactive glass (MBG) into self-curing β-dicalcium silicate (Ca SiO ) cement shell to form spherical granules (CaSiO @Ca SiO , MBG@Ca SiO ) was to retain the physicochemical property and/or microstructure of each component for optimizing bioactive ion release that could maximize osteostimulation in osteoporosis. We report a scalable shape-controlled mild fabrication protocol to yield the yolk-shell granules, endowing to different phases in yolk layer and interconnected macropore networks in the closely packed granule scaffolds. This unique heterostructure preparation is governed by coaxially aligned bilayer nozzle, inorganic powders and biocompatible binders. Extensive in vitro and in vivo evaluation showed that the CaSiO @Ca SiO and MBG@Ca SiO granules exhibited many superior properties such as controllable ion release, improved biodegradation and enhanced osteogenic capability in comparison with the pure Ca SiO @Ca SiO , thereby opening new mild-condition approach in fabricating osteogenesis-tailored silicate biomaterials for bone regenerative medicine, especially for efficient reconstruction of challenging pathological bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34396DOI Listing

Publication Analysis

Top Keywords

bone defects
12
@ca sio
12
bone
8
repair osteoporotic
8
regenerative medicine
8
biological performances
8
pathological bone
8
casio @ca
8
sio mbg@ca
8
mbg@ca sio
8

Similar Publications

The posterior mandible is the primary area for occlusal function. However, long-term tooth loss in the posterior mandible often leads to rapid absorption of both buccal and lingual trabecular bone plates and subsequent atrophy of the alveolar ridge. This ultimately results in horizontal bone deficiencies that complicate achieving an optimal three-dimensional placement for dental implants.

View Article and Find Full Text PDF

Background Vitamin B12 deficiency, or cobalamin deficiency, is common among populations with low consumption of animal-based products, mainly in India, due to religious and socioeconomic factors, which significantly increase the deficiency rate. The condition has been characterized by a wide range of clinical and hematological symptoms, mainly affecting the blood and nervous system. This study aims to assess the clinical and hematological characteristics of patients with vitamin B12 deficiency and assess the therapeutic response to supplementation with vitamin B12.

View Article and Find Full Text PDF

Nuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!