Nanopore sequencing: Review of potential applications in functional genomics.

Dev Growth Differ

Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.

Published: June 2019

Molecular biology has been led by various measurement technologies, and increased throughput has developed omics analysis. The development of massively parallel sequencing technology has enabled access to fundamental molecular data and revealed genomic and transcriptomic signatures. Nanopore sequencers have driven such evolution to the next stage. Oxford Nanopore Technologies Inc. provides a new type of single molecule sequencer using protein nanopore that realizes direct sequencing without DNA synthesizing or amplification. This nanopore sequencer can sequence an ultra-long read limited by the input nucleotide length, or can determine DNA/RNA modifications. Recently, many fields such as medicine, epidemiology, ecology, and education have benefited from this technology. In this review, we explain the features and functions of the nanopore sequencer, introduce various situations where it has been used as a critical technology, and expected future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dgd.12608DOI Listing

Publication Analysis

Top Keywords

nanopore sequencer
8
nanopore
6
nanopore sequencing
4
sequencing review
4
review potential
4
potential applications
4
applications functional
4
functional genomics
4
genomics molecular
4
molecular biology
4

Similar Publications

Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability.

View Article and Find Full Text PDF

Aulacorthum solani is a worldwide agricultural pest aphid capable of feeding on a wide range of host plants. This insect is a vector of plant viruses and causes injury to crops including stunted growth from the loss of phloem. We found that the publicly available genome for A.

View Article and Find Full Text PDF

Combination therapies using checkpoint inhibitors with immunostimulatory agonists have attracted great attention due to their synergistic therapeutic effects for cancer treatment. However, such combination immunotherapies require specific timing of doses to show sufficient antitumor efficacy. Sequential treatment usually requires multiple administrations of the individual drugs at specific time points, thus increasing the complexity of the drug regimen and compromising patient compliance.

View Article and Find Full Text PDF

Since the 1990s, the Pacific oyster has faced significant mortality, which has been associated with the detection of the Ostreid Herpesvirus type 1 (OsHV-1). Due to the complex genomic architecture and the presence of multiple genomic isomers, short-read sequencing using Illumina method struggles to accurately assemble tandem and repeat regions and to identify and characterize large structural variations in the OsHV-1 genome. Third-generation sequencing technologies, as long-read real-time nanopore sequencing from Oxford Nanopore Technologies (ONT), offer new possibilities for OsHV-1 whole-genome analysis.

View Article and Find Full Text PDF

DNA Origami Framework-Based Spatial Nanochip for Circular ssDNA Assembly and Data Storage.

Small

January 2025

Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!