Characterization of Functional Primary Cilia in Human Induced Pluripotent Stem Cell-Derived Neurons.

Neurochem Res

Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.

Published: July 2019

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-019-02806-4DOI Listing

Publication Analysis

Top Keywords

primary cilia
16
icell glutaneurons
12
cilia length
12
human induced
8
induced pluripotent
8
pluripotent stem
8
hipsc-derived neurons
8
primary cilium
8
cilia
7
primary
6

Similar Publications

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

Introduction: Primary cilia play an important role in the development of cancer by regulating signaling pathways. Several studies have demonstrated that women with mutations have, on average, 50% fewer ciliated cells compared with general women. However, the role of tubal cilia loss in the development of epithelial ovarian cancer (EOC) remains unclear.

View Article and Find Full Text PDF

Insight into Covid Associated Mucormycosis: A Prospective Study.

Iran J Otorhinolaryngol

January 2025

Department of Otorhinolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, India.

Introduction: The notable increase in cases of rhino-orbito-cerebral Mucormycosis during the COVID pandemic is alarming. Both share a common route of entry, the nasal mucosa, leading to speculation about whether similar receptors play a role in both diseases. We aim to compare the expression of ACE2 and TMPRSS2 in the nasal and paranasal sinus tissues among patients with COVID-19-associated Mucormycosis (CAM), COVID-19-negative mucormycosis (CNM), and healthy individuals.

View Article and Find Full Text PDF

Joubert Syndrome (JS) is a congenital cerebellar ataxia typically inherited in an autosomal recessive pattern, although rare X-linked inheritance can occur. It is characterized by hypotonia evolving into ataxia, global developmental delay, oculomotor apraxia, breathing dysregulation, and multiorgan involvement. To date, there are 40 causative genes implicated in JS, all of which encode proteins of the primary cilium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!