Plasmids associated with heavy metal resistance and herbicide degradation potential in bacterial isolates obtained from two Brazilian regions.

Environ Monit Assess

Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.

Published: April 2019

The use of pesticides has been increasing due to the great agricultural production worldwide. The pesticides are used to eradicate pests and weeds; however, these compounds are classified as toxic to non-target organisms. Atrazine and diuron are herbicides widely used to control grassy and broadleaf weeds and weed control in agricultural crops and non-crop areas. Heavy metals are also important environmental contaminants that affect the ecological system. This study aimed to investigate the presence of herbicides-degrading genes and heavy metal resistance genes in bacterial isolates from two different soil samples from two Brazilian regions and to determine the genetic location of these genes. In this study, two isolates were obtained and identified as Escherichia fergusonii and Bacillus sp. Both isolates presented atzA, atzB, atzC, atzD, atzE, atzF, puhA, and copA genes and two plasmids each, being the major with ~ 60 Kb and a smaller with ~ 3.2 Kb. Both isolates presented the atzA-F genes inside the larger plasmid, while the puhA and copA genes were detected in the smaller plasmid. Digestion reactions were performed and showed that the ~ 60-Kb plasmid presented the same restriction profile using different restriction enzymes, suggesting that this plasmid harboring the complete degradation pathway to atrazine was found in both isolates. These results suggest the dispersion of these plasmids and the multi-herbicide degradation potential in both isolates to atrazine and diuron, which are widely used in different culture types worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-019-7461-9DOI Listing

Publication Analysis

Top Keywords

heavy metal
8
metal resistance
8
degradation potential
8
bacterial isolates
8
brazilian regions
8
atrazine diuron
8
isolates presented
8
puha copa
8
copa genes
8
isolates
7

Similar Publications

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.

Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.

View Article and Find Full Text PDF

Astragaloside IV attenuates cadmium induced nephrotoxicity in rats by activating Nrf2.

Sci Rep

January 2025

Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.

Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.

View Article and Find Full Text PDF

The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!