Plant long non-coding RNA (lncRNA) undergoes dynamic regulation and acts in developmental and stress regulation. In this study, we surveyed the expression dynamics of lncRNAs in grapevine (Vitis vinifera L.) under cold stress using high-throughput sequencing. Two-hundred and three known lncRNAs were significantly up-regulated and 144 known lncRNAs were significantly down-regulated in cold-treated grapevine. In addition, 2 088 novel lncRNA transcripts were identified in this study, with 284 novel lncRNAs significantly up-regulated and 182 novel lncRNAs significantly down-regulated in cold-treated grapevine. Two-hundred and forty-two differentially expressed grapevine lncRNAs were predicted to target 326 protein-coding genes in a cis-regulatory relationship. Many differentially expressed grapevine lncRNAs targeted stress response-related genes, such as CBF4 transcription factor genes, late embryogenesis abundant protein genes, peroxisome biogenesis protein genes, and WRKY transcription factor genes. Sixty-two differentially expressed grapevine lncRNAs were predicted to target 100 protein-coding genes in a trans-regulatory relationship. The expression of overall target genes in both cis and trans-regulatory relationships were positively related to the expression of lncRNAs in grapevines under cold stress. We identified 31 known lncRNAs as 34 grapevine micro RNA (miRNA) precursors and some miRNAs may be derived from multiple lncRNAs. We found 212 lncRNAs acting as targets of miRNAs in grapevines, involving 150 miRNAs; additionally, 120 grapevine genes were predicted as targets of grapevine miRNAs and lncRNAs. We found one gene cluster that was up-regulated and showed the same expression trend. In this cluster, many genes may be involved in abiotic stress response such as WRKY, Hsf, and NAC transcription factor genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488645PMC
http://dx.doi.org/10.1038/s41598-019-43269-5DOI Listing

Publication Analysis

Top Keywords

lncrnas
13
differentially expressed
12
expressed grapevine
12
grapevine lncrnas
12
transcription factor
12
factor genes
12
genes
11
grapevine
10
long non-coding
8
non-coding rna
8

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Purpose: This study intends to investigate the relationship between FENDRR and miR-424-5p and their clinical significance in sepsis, aiming to provide new diagnostic markers and prognostic markers for sepsis.

Methods: 136 patients with sepsis and 132 healthy volunteers were included as study subjects. The expression levels of FENDRR and miR-424-5p were detected by qPCR.

View Article and Find Full Text PDF

Clinical diagnostic value and potential regulatory mechanisms of lncRNA NOP14-AS1 in chronic kidney disease.

Nucleosides Nucleotides Nucleic Acids

January 2025

Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.

In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!